Using Tissue-Energy Response to Generate Virtual Monoenergetic Images from Conventional CT for Computer-aided Diagnosis of Lesions

Shaojie Chang, Yongfeng Gao, Marc J. Pomeroy, Ti Bai, Hao Zhang, Zhengrong Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Based on the X-ray physics in computed tomography (CT) imaging, the linear attenuation coefficient (LAC) of each human tissue is described as a function of the X-ray photon energy. Different tissue types (i.e. muscle, fat, bone, and lung tissue) have their energy responses and bring more tissue contrast distribution information along the energy axis, which we call tissue-energy response (TER). In this study, we propose to use TER to generate virtual monoenergetic images (VMIs) from conventional CT for computer-aided diagnosis (CADx) of lesions. Specifically, for a conventional CT image, each tissue fraction can be identified by the TER curve at the effective energy of the setting tube voltage. Based on this, a series of VMIs can be generated by the tissue fractions multiplying the corresponding TER. Moreover, a machine learning (ML) model is developed to exploit the energy-enhanced tissue material features for differentiating malignant from benign lesions, which is based on the data-driven deep learning (DL)-CNN method. Experimental results demonstrated that the DL-CADx models with the proposed method can achieve better classification performance than the conventional CT-based CADx method from three sets of pathologically proven lesion datasets.

Original languageEnglish (US)
Title of host publication7th International Conference on Image Formation in X-Ray Computed Tomography
EditorsJoseph Webster Stayman
PublisherSPIE
ISBN (Electronic)9781510656697
DOIs
StatePublished - 2022
Event7th International Conference on Image Formation in X-Ray Computed Tomography - Virtual, Online
Duration: Jun 12 2022Jun 16 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12304
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference7th International Conference on Image Formation in X-Ray Computed Tomography
CityVirtual, Online
Period6/12/226/16/22

Keywords

  • CT image analysis
  • Computer-aided diagnosis
  • Machine learning
  • Malignant
  • benign differentiation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Using Tissue-Energy Response to Generate Virtual Monoenergetic Images from Conventional CT for Computer-aided Diagnosis of Lesions'. Together they form a unique fingerprint.

Cite this