Up-Regulation of Endoglin on Vascular Endothelial Cells in Human Solid Tumors: Implications for Diagnosis and Therapy

Francis J. Burrows, Elaine J. Derbyshire, Pier Luigi Tazzari, Peter Amlot, Adi F. Gazdar, Steven W. King, Michelle Letarte, Ellen S. Vitetta, Philip E. Thorpe

Research output: Contribution to journalArticlepeer-review

331 Scopus citations


We have characterized a murine IgM monoclonal antibody, TEC-11, that recognizes endoglin and may be suitable for targeting cytotoxic agents to human tumor vasculature. TEC-11 strongly stains endothelial cells in a broad ränge of solid human tumors while staining endothelial cells in the majority of normal, healthy adult tissues relatively weakly. Human umbilical vein endothelial cells (HUVECs) in sections of the umbilical vein react weakly with TEC-11, whereas proliferating HUVECs in tissue culture react strongly and uniformly. HUVEC cultures grown to confluence and then rested contain two subpopulations having high and low levels of endoglin expression. Flow cytometry revealed that a significant proportion of cells with high endoglin expression are cycling, having markedly increased levels of cellular protein, RNA, and DNA by comparison to low endoglin-expressing cells, which appear to be noncycling. Taken together, the increased binding of TEC-11 to tumor vasculature and to dividing as opposed to noncycling HUVECs in vitro suggests that endoglin is an endothelial cell proliferation-associated marker. An immunotoxin [TEC- 11.deglycosylated ricin A chain (dgA)] composed of TEC-11 and dgA was 3000-fold more potent at inhibiting protein synthesis in proliferating HUVEC cultures than in confluent cultures. The confluent cells were no more sensitive to TEC- 11.dgA than they were to an isotype-matched immunotoxin.

Original languageEnglish (US)
Pages (from-to)1623-1634
Number of pages12
JournalClinical Cancer Research
Issue number12
StatePublished - Dec 1 1995

ASJC Scopus subject areas

  • Oncology
  • Cancer Research


Dive into the research topics of 'Up-Regulation of Endoglin on Vascular Endothelial Cells in Human Solid Tumors: Implications for Diagnosis and Therapy'. Together they form a unique fingerprint.

Cite this