Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment

Jeffrey M. Cochran, David R. Busch, Anaïs Leproux, Zheng Zhang, Thomas D. O'Sullivan, Albert E. Cerussi, Philip M. Carpenter, Rita S. Mehta, Darren Roblyer, Wei Yang, Keith D. Paulsen, Brian Pogue, Shudong Jiang, Peter A. Kaufman, So Hyun Chung, Mitchell Schnall, Bradley S. Snyder, Nola Hylton, Stefan A. Carp, Steven J. IsakoffDavid Mankoff, Bruce J. Tromberg, Arjun G. Yodha

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Ideally, Neoadjuvant chemotherapy (NAC) assessment should predict pathologic complete response (pCR), a surrogate clinical endpoint for 5-year survival, as early as possible during typical 3-to 6-month breast cancer treatments. We introduce and demonstrate an approach for predicting pCR within 10 days of initiating NAC. The method uses a bedside diffuse optical spectroscopic imaging (DOSI) technology and logistic regression modeling. Tumor and normal tissue physiological properties were measured longitudinally throughout the course of NAC in 33 patients enrolled in the American College of Radiology Imaging Network multicenter breast cancer DOSI trial (ACRIN-6691). An image analysis scheme, employing z-score normalization to healthy tissue, produced models with robust predictions. Notably, logistic regression based on z-score normalization using only tissue oxygen saturation (StO2) measured within 10 days of the initial therapy dose was found to be a significant predictor of pCR (AUC = 0.92; 95% CI: 0.82 to 1). This observation suggests that patients who show rapid convergence of tumor tissue StO2 to surrounding tissue StO2 are more likely to achieve pCR. This early predictor of pCR occurs prior to reductions in tumor size and could enable dynamic feedback for optimization of chemotherapy strategies in breast cancer.

Original languageEnglish (US)
Article number021202
JournalJournal of biomedical optics
Volume24
Issue number2
DOIs
StatePublished - Jan 1 2019

Keywords

  • Biomedical Optics
  • Breast Cancer
  • Diffuse Optical Spectroscopy
  • Neoadjuvant Chemotherapy
  • Therapy Monitoring
  • Translational Imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment'. Together they form a unique fingerprint.

Cite this