Abstract
Cortical reorganization after stroke is thought to underlie functional improvement. Patterns of reorganization may differ depending on the amount of time since the stroke or the degree of improvement. We investigated these issues in a study of brain connectivity changes with aphasia therapy. Twelve individuals with chronic aphasia participated in a 6-week trial of imitation-based speech therapy. We assessed improvement on a repetition test and analyzed effective connectivity during functional magnetic resonance imaging of a speech observation task before and after therapy. Using structural equation modeling, patient networks were compared with a model derived from healthy controls performing the same task. Independent of the amount of time since the stroke, patients demonstrating behavioral improvement had networks that reorganized to be more similar to controls in two functional pathways in the left hemisphere. Independent of behavioral improvement, patients with remote infarcts (2-7 years poststroke; n = 5) also reorganized to more closely resemble controls in one of these pathways. Patients with far removed injury (>10 years poststroke; n = 3) did not show behavioral improvement and, despite similarities to the normative model and overall network heterogeneity, reorganized to be less similar to controls following therapy in a distinct right-lateralized pathway. Behavioral improvement following aphasia therapy was associated with connectivity more closely approximating that of healthy controls. Individuals who had a stroke more than a decade before testing also showed plasticity, with a few pathways becoming less like controls, possibly representing compensation. Better understanding of these mechanisms may help direct targeted brain stimulation.
Original language | English (US) |
---|---|
Pages (from-to) | 179-188 |
Number of pages | 10 |
Journal | Brain Connectivity |
Volume | 8 |
Issue number | 3 |
DOIs | |
State | Published - Apr 2018 |
Externally published | Yes |
Keywords
- aphasia
- effective connectivity
- neuroplasticity
- speech therapy
- stroke recovery
ASJC Scopus subject areas
- Neuroscience(all)