The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT

Lukasz A. Joachimiak, Thomas Walzthoeni, Corey W. Liu, Ruedi Aebersold, Judith Frydman

Research output: Contribution to journalArticlepeer-review

112 Scopus citations

Abstract

The eukaryotic chaperonin TRiC (also called CCT) is the obligate chaperone for many essential proteins. TRiC is hetero-oligomeric, comprising two stacked rings of eight different subunits each. Subunit diversification from simpler archaeal chaperonins appears linked to proteome expansion. Here, we integrate structural, biophysical, and modeling approaches to identify the hitherto unknown substrate-binding site in TRiC and uncover the basis of substrate recognition. NMR and modeling provided a structural model of a chaperonin-substrate complex. Mutagenesis and crosslinking-mass spectrometry validated the identified substrate-binding interface and demonstrate that TRiC contacts full-length substrates combinatorially in a subunit-specific manner. The binding site of each subunit has a distinct, evolutionarily conserved pattern of polar and hydrophobic residues specifying recognition of discrete substrate motifs. The combinatorial recognition of polypeptides broadens the specificity of TRiC and may direct the topology of bound polypeptides along a productive folding trajectory, contributing to TRiC's unique ability to fold obligate substrates.

Original languageEnglish (US)
Pages (from-to)1042-1055
Number of pages14
JournalCell
Volume159
Issue number5
DOIs
StatePublished - Nov 20 2014
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT'. Together they form a unique fingerprint.

Cite this