The QseC sensor kinase: A bacterial adrenergic receptor

Marcie B. Clarke, David T. Hughes, Chengru Zhu, Edgar C. Boedeker, Vanessa Sperandio

Research output: Contribution to journalArticlepeer-review

479 Scopus citations

Abstract

Quorum sensing is a cell-to-cell signaling mechanism in which bacteria respond to hormone-like molecules called autoinducers (AIs). The AI-3 quorum-sensing system is also involved in interkingdom signaling with the eukaryotic hormones epinephrine/norepinephrine. This signaling activates transcription of virulence genes in enterohemorrhagic Escherichia coli O157:H7. However, this signaling system has never been shown to be involved in virulence in vivo, and the bacterial receptor for these signals had not been identified. Here, we show that the QseC sensor kinase is a bacterial receptor for the host epinephrine/norepinephrine and the AI-3 produced by the gastrointestinal microbial flora. We also found that an α-adrenergic antagonist can specifically block the QseC response to these signals. Furthermore, we demonstrated that a qseC mutant is attenuated for virulence in a rabbit animal model, underscoring the importance of this signaling system in virulence in vivo. Finally, an in silico search found that the periplasmic sensing domain of QseC is conserved among several bacterial species. Thus, QseC is a bacterial adrenergic receptor that activates virulence genes in response to interkingdom cross-signaling. We anticipate that these studies will be a starting point in understanding bacterial-host hormone signaling at the biochemical level. Given the role that this system plays in bacterial virulence, further characterization of this unique signaling mechanism may be important for developing novel classes of antimicrobials.

Original languageEnglish (US)
Pages (from-to)10420-10425
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume103
Issue number27
DOIs
StatePublished - Jul 4 2006

Keywords

  • AI-3
  • Enterohemorrhagic Escherichia coli
  • Epinephrine
  • Quorum sensing
  • Two-component systems

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The QseC sensor kinase: A bacterial adrenergic receptor'. Together they form a unique fingerprint.

Cite this