Abstract
While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α (Hoxa11-CreERT2; Hif1afl/fl) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreERT2; Hif1afl/fl mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.
Original language | English (US) |
---|---|
Article number | 17 |
Journal | Bone Research |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2024 |
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Histology
- Physiology