Abstract
Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K + ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na + channel Na V1.4. Mice heterozygous for this mutation exhibited prominent myotonia at rest and muscle fiber-type switching to a more oxidative phenotype compared with controls. Isolated mutant extensor digitorum longus muscles were abnormally sensitive to the Na +/K + pump inhibitor ouabain and exhibited age-dependent changes, including delayed relaxation and altered generation of tetanic force. Moreover, rapid and sustained weakness of isolated mutant muscles was induced when the extracellular K + concentration was increased from 4 mM to 10 mM, a level observed in the muscle interstitium of humans during exercise. Mutant muscle recovered from stimulation-induced fatigue more slowly than did control muscle, and the extent of recovery was decreased in the presence of high extracellular K + levels. These findings demonstrate that expression of the Met1592Val Na + channel in mouse muscle is sufficient to produce important features of HyperKPP, including myotonia, K +-sensitive paralysis, and susceptibility to delayed weakness during recovery from fatigue.
Original language | English (US) |
---|---|
Pages (from-to) | 1437-1449 |
Number of pages | 13 |
Journal | Journal of Clinical Investigation |
Volume | 118 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2008 |
ASJC Scopus subject areas
- Medicine(all)