TY - JOUR
T1 - Superior Antitumor Activity of Nanoparticle Albumin-Bound Paclitaxel in Experimental Gastric Cancer
AU - Zhang, Changhua
AU - Awasthi, Niranjan
AU - Schwarz, Margaret A.
AU - Hinz, Stefan
AU - Schwarz, Roderich E.
PY - 2013/2/27
Y1 - 2013/2/27
N2 - Gastric cancer is the second common cause of cancer related death worldwide and lacks highly effective treatment for advanced disease. Nab-paclitaxel is a novel microtubule-inhibitory cytotoxic agent that has not been tested in gastric cancer as of yet. In this study, human gastric cancer cell lines AGS, NCI-N87 and SNU16 were studied. Nab-paclitaxel inhibited cell proliferation with an IC50 of 5 nM in SNU16, 23 nM in AGS and 49 nM in NCI-N87 cells after 72-hour treatment, which was lower than that of oxaliplatin (1.05 μM to 1.51 μM) and epirubicin (0.12 μM to 0.25 μM). Nab-paclitaxel treatment increased expression of the mitotic-spindle associated phospho-stathmin irrespective of the baseline total or phosphorylated stathmin level, and induced mitotic cell death as confirmed through increased expression of cleaved-PARP and caspase-3. After a two-week nab-paclitaxel, oxaliplatin or epirubicin treatment, the average in vivo local tumor growth inhibition rate was 77, 17.2 and 21.4 percent, respectively (p = 0.002). Effects of therapy on tumoral proliferative and apoptotic indices corresponded with tumor growth inhibition data, while expression of phospho-stathmin also increased in tissues. There was an increase in median animal survival after nab-paclitaxel treatment (93 days) compared to controls (31 days, p = 0.0007), oxaliplatin (40 days, p = 0.0007) or to docetaxel therapy (81 days, p = 0.0416). The strong antitumor activity of nab-paclitaxel in experimental gastric cancer supports such microtubule-inhibitory strategy for clinical application. Nab-paclitaxel benefits were observed independent from phosphorylated stathmin expression at baseline, putting into question the consideration of nab-paclitaxel use in gastric cancer based on this putative biomarker.
AB - Gastric cancer is the second common cause of cancer related death worldwide and lacks highly effective treatment for advanced disease. Nab-paclitaxel is a novel microtubule-inhibitory cytotoxic agent that has not been tested in gastric cancer as of yet. In this study, human gastric cancer cell lines AGS, NCI-N87 and SNU16 were studied. Nab-paclitaxel inhibited cell proliferation with an IC50 of 5 nM in SNU16, 23 nM in AGS and 49 nM in NCI-N87 cells after 72-hour treatment, which was lower than that of oxaliplatin (1.05 μM to 1.51 μM) and epirubicin (0.12 μM to 0.25 μM). Nab-paclitaxel treatment increased expression of the mitotic-spindle associated phospho-stathmin irrespective of the baseline total or phosphorylated stathmin level, and induced mitotic cell death as confirmed through increased expression of cleaved-PARP and caspase-3. After a two-week nab-paclitaxel, oxaliplatin or epirubicin treatment, the average in vivo local tumor growth inhibition rate was 77, 17.2 and 21.4 percent, respectively (p = 0.002). Effects of therapy on tumoral proliferative and apoptotic indices corresponded with tumor growth inhibition data, while expression of phospho-stathmin also increased in tissues. There was an increase in median animal survival after nab-paclitaxel treatment (93 days) compared to controls (31 days, p = 0.0007), oxaliplatin (40 days, p = 0.0007) or to docetaxel therapy (81 days, p = 0.0416). The strong antitumor activity of nab-paclitaxel in experimental gastric cancer supports such microtubule-inhibitory strategy for clinical application. Nab-paclitaxel benefits were observed independent from phosphorylated stathmin expression at baseline, putting into question the consideration of nab-paclitaxel use in gastric cancer based on this putative biomarker.
UR - http://www.scopus.com/inward/record.url?scp=84874544469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874544469&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0058037
DO - 10.1371/journal.pone.0058037
M3 - Article
C2 - 23460921
AN - SCOPUS:84874544469
SN - 1932-6203
VL - 8
JO - PLoS One
JF - PLoS One
IS - 2
M1 - e58037
ER -