Spermidine inversely influences surface interactions and planktonic growth in Agrobacterium tumefaciens

Yi Wang, Sok Ho Kim, Ramya Natarajan, Jason E. Heindl, Eric L. Bruger, Christopher M. Waters, Anthony J. Michael, Clay Fuqua

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

In bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene in Agrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants for odc grew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite in A. tumefaciens and is synthesized from putrescine in A. tumefaciens via the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to the odc mutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for the odc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. The odc mutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.

Original languageEnglish (US)
Pages (from-to)2682-2691
Number of pages10
JournalJournal of bacteriology
Volume198
Issue number19
DOIs
StatePublished - 2016

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Spermidine inversely influences surface interactions and planktonic growth in Agrobacterium tumefaciens'. Together they form a unique fingerprint.

Cite this