Simulation studies of time reversal-based protoacoustic reconstruction for range and dose verification in proton therapy

Yajun Yu, Zhongxing Li, Dong Zhang, Lei Xing, Hao Peng

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Purpose: In vivo range verification in proton therapy is a critical step to help minimize range and dose uncertainty. We propose to employ a time reversal (TR)-based approach using proton-induced acoustics (protoacoustics) to reconstruct pressure/dose distribution in heterogeneous tissues. Methods: The dose distribution of mono-energetic proton pencil beam in a CT-based patient phantom was calculated by Monte Carlo simulation. K-wave toolbox was used to investigate protoacoustic pressurization, propagation and reconstruction in 2D. To address the tissue heterogeneity effect, a number of physical parameters, including mass density (ρ), speed of sound (c), volumetric thermal expansion coefficient (αV), isobaric specific heat capacity (Cp) and attenuation power law prefactor (α0), were empirically converted from CT number. The performance was evaluated using two figures of merit: mean square error (MSE) of pressure profiles and Bragg peak localization error (ΔBP). The impact of six parameters of the TR inversion was examined, including number of sensors, sampling duration, sampling timestep, spill time, noise level and number of iterations. Results: The quantitative accuracy of TR reconstruction and its dependency on the selected parameters is presented. Under optimum conditions, the positioning accuracy of the Bragg peak can be controlled below 1 mm. For instance, MSE is 0.0123 and ΔBP is 0.59 mm under the following conditions (32 sensors, sampling duration: 600 µs, sampling timestep: 40 ns, spill time: 1 µs, no noise). Conclusions: The feasibility of TR-based protoacoustic reconstruction in 2D for proton range verification was first demonstrated. The approach is not only applicable to pencil beam, but also has potential to be extended to passive scattering systems.

Original languageEnglish (US)
Pages (from-to)3649-3662
Number of pages14
JournalMedical physics
Volume46
Issue number8
DOIs
StatePublished - Aug 2019
Externally publishedYes

Keywords

  • dose verification
  • protoacoustics
  • proton therapy
  • range verification
  • time reversal

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Simulation studies of time reversal-based protoacoustic reconstruction for range and dose verification in proton therapy'. Together they form a unique fingerprint.

Cite this