Siamese neural networks for the classification of high-dimensional radiomic features

Abhishaike Mahajan, James Dormer, Qinmei Li, Deji Chen, Zhenfeng Zhang, Baowei Fei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


This study demonstrates that a variant of a Siamese neural network architecture is more effective at classifying highdimensional radiomic features (extracted from T2 MRI images) than traditional models, such as a Support Vector Machine or Discriminant Analysis. Ninety-nine female patients, between the ages of 20 and 48, were imaged with T2 MRI. Using biopsy pathology, the patients were separated into two groups: those with breast cancer (N=55) and those with GLM (N=44). Lesions were segmented by a trained radiologist and the ROIs were used for radiomic feature extraction. The radiomic features include 536 published features from Aerts et al., along with 20 features recurrent quantification analysis features. A Student T-Test was used to select features found to be statistically significant between the two patient groups. These features were then used to train a Siamese neural network. The label given to test features was the label of whichever class the test features with the highest percentile similarity within the training group. Within the two highest-dimensional feature sets, the Siamese network produced an AUC of 0.853 and 0.894, respectively. This is compared to best non-Siamese model, Discriminant Analysis, which produced an AUC of 0.823 and 0.836 for the two respective feature sets. However, when it came to the lower-dimensional recurrent features and the top-20 most significant features from Aerts et al., the Siamese network performed on-par or worse than the competing models. The proposed Siamese neural network architecture can outperform competing other models in high-dimensional, low-sample size spaces with regards to tabular data.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2020
Subtitle of host publicationComputer-Aided Diagnosis
EditorsHorst K. Hahn, Maciej A. Mazurowski
ISBN (Electronic)9781510633957
StatePublished - 2020
EventMedical Imaging 2020: Computer-Aided Diagnosis - Houston, United States
Duration: Feb 16 2020Feb 19 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2020: Computer-Aided Diagnosis
Country/TerritoryUnited States


  • breast cancer
  • disease classification
  • machine learning
  • mastitis
  • mri
  • neural network
  • radiomics
  • siamese network

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Siamese neural networks for the classification of high-dimensional radiomic features'. Together they form a unique fingerprint.

Cite this