RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes

D. Yowe, N. Weich, M. Prabhudas, L. Poisson, P. Errada, R. Kapeller, K. Yu, L. Faron, M. Shen, J. Cleary, T. M. Wilkie, C. Gutierrez-Ramos, M. R. Hodge

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Myelopoiesis and lymphopoiesis are controlled by haematopoietic growth factors, including cytokines, and chemokines that bind to G-protein-coupled receptors (GPCRs). Regulators of G-protein signalling (RGSs) are a protein family that can act as GTPase-activating proteins for Gαi- and Gαq-class proteins. We have identified a new member of the R4 subfamily of RGS proteins, RGS18. RGS18 contains clusters of hydrophobic and basic residues, which are characteristic of an amphipathic helix within its first 33 amino acids. RGS18 mRNA was most highly abundant in megakaryocytes, and was also detected specifically in haematopoietic progenitor and myeloerythroid lineage cells. RGS18 mRNA was not detected in cells of the lymphoid line-age. RGS18 was also highly expressed in mouse embryonic 15-day livers, livers being the principal organ for haematopoiesis at this stage of fetal development. RGS1, RGS2 and RGS16, other members of the R4 subfamily, were expressed in distinct progenitor and mature myeloerythroid and lymphoid lineage blood cells. RGS18 was shown to interact specifically with the Gαi-3 subunit in membranes from K562 cells. Furthermore, overexpression of RGS18 inhibited mitogen-activated-protein kinase activation in HEK-293/chemokine receptor 2 cells treated with monocyte chemotactic protein-1. In yeast cells, RGS18 overexpression complemented a pheromone-sensitive phenotype caused by mutations in the endogeneous yeast RGS gene, SST2. These data demonstrated that RGS18 was expressed most highly in megakaryocytes, and can modulate GPCR pathways in both mammalian and yeast cells in vitro. Hence RGS18 might have an important role in the regulation of megakaryocyte differentiation and chemotaxis.

Original languageEnglish (US)
Pages (from-to)109-118
Number of pages10
JournalBiochemical Journal
Volume359
Issue number1
DOIs
StatePublished - Oct 1 2001

Keywords

  • G-protein-coupled receptors
  • Haematopoiesis
  • Inflammation
  • Megakaryocyte
  • Platelets
  • Regulators of G-protein signalling

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes'. Together they form a unique fingerprint.

Cite this