Quantitative comparison of spatial resolution in step-and-shoot and continuous motion digital breast tomosynthesis

Muhammad U. Ghani, Di Wu, Molly D. Wong, Liqiang Ren, Bin Zheng, Kai Yang, Xizeng Wu, Hong Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

This study compares the spatial resolution in step-and-shoot and continuous motion acquisition modes of digital tomosynthesis using a bench-top prototype designed for breast phantoms imaging. The prototype employs a flat panel detector with a 50 μm pixel pitch, a micro focus x-ray tube and a motorized stage. A sharp metal edge with a thickness of 0.2 mm was used to measure the modulation transfer function (MTF). The edge was rotated from -7.5° to +7.5° with 1.5° increments to acquire 11 angular projections using 40 kVp, 500 μA with 5.55 s per projection. In continuous motion mode, the motorized stage moved the test object for the whole exposure time at a speed of 0.377 mm/s. The impact of acquisition speed in continuous DBT was also investigated, and a high speed of 0.753 mm/s was used. In step-and-shoot mode, the cutoff frequencies (10% MTF) in projection view (0°) and reconstructed DBT slices were 5.55 lp/mm and 4.95 lp/mm. Spatial resolution dropped in the continuous motion mode of the DBT due to the blur caused by the rotation of the stage and the cutoff frequencies reduced to 3.6 lp/mm and 3.18 lp/mm in the projection view (0°) and reconstructed DBT slices. At high rotational speed in continuous motion mode, the cutoff frequencies in the DBT slices dropped by 17 % to 2.65 lp/mm. Rotational speed of the rotation stage and spatial resolution are interconnected. Hence, reducing the motion blur in the continuous acquisition mode is important to maintain high spatial resolution for diagnostic purposes.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016
Subtitle of host publicationPhysics of Medical Imaging
EditorsDespina Kontos, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510600188
DOIs
StatePublished - 2016
Externally publishedYes
EventMedical Imaging 2016: Physics of Medical Imaging - San Diego, United States
Duration: Feb 28 2016Mar 2 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9783
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2016: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period2/28/163/2/16

Keywords

  • Digital Breast Tomosynthesis
  • continuous motion
  • spatial resolution
  • step-and-shoot

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Quantitative comparison of spatial resolution in step-and-shoot and continuous motion digital breast tomosynthesis'. Together they form a unique fingerprint.

Cite this