Proteomic Determinants of Variation in Cholesterol Efflux: Observations from the Dallas Heart Study

Anamika Gangwar, Sneha S. Deodhar, Suzanne Saldanha, Olle Melander, Fahim Abbasi, Ryan W. Pearce, Timothy S. Collier, Michael J. McPhaul, Jeremy D. Furtado, Frank M. Sacks, Nathaniel J. Merrill, Jason E. McDermott, John T. Melchior, Anand Rohatgi

Research output: Contribution to journalArticlepeer-review

Abstract

High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and −0.21 respectively) and low (r = −0.46, −0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = −0.11 to −0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.

Original languageEnglish (US)
Article number15526
JournalInternational journal of molecular sciences
Volume24
Issue number21
DOIs
StatePublished - Nov 2023
Externally publishedYes

Keywords

  • apolipoprotein
  • atherosclerotic cardiovascular disease
  • cholesterol efflux capacity
  • high-density lipoproteins (HDLs)
  • proteomics

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Proteomic Determinants of Variation in Cholesterol Efflux: Observations from the Dallas Heart Study'. Together they form a unique fingerprint.

Cite this