TY - JOUR
T1 - Probing the Effective Treatment Thresholds for Alteplase in Acute Ischemic Stroke With Regression Discontinuity Designs
AU - Naidech, Andrew M.
AU - Lawlor, Patrick N.
AU - Xu, Haolin
AU - Fonarow, Gregg C.
AU - Xian, Ying
AU - Smith, Eric E.
AU - Schwamm, Lee
AU - Matsouaka, Roland
AU - Prabhakaran, Shyam
AU - Marinescu, Ioana
AU - Kording, Konrad P.
N1 - Funding Information:
Funding. The Get With The Guidelines®-Stroke (GWTG-Stroke) program is provided by the American Heart Association/American Stroke Association. GWTG-Stroke was sponsored, in part, by Novartis, Boehringer Ingelheim Lilly, Novo Nordisk, Sanofi, AstraZeneca and Bayer. The authors declare that this study received funding from Boehringer-Ingelheim and Merck. The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.
Publisher Copyright:
© Copyright © 2020 Naidech, Lawlor, Xu, Fonarow, Xian, Smith, Schwamm, Matsouaka, Prabhakaran, Marinescu and Kording.
PY - 2020/9/2
Y1 - 2020/9/2
N2 - Randomized Controlled Trials (RCTs) are considered the gold standard for measuring the efficacy of medical interventions. However, RCTs are expensive, and use a limited population. Techniques to estimate the effects of stroke interventions from observational data that minimize confounding would be useful. We used regression discontinuity design (RDD), a technique well-established in economics, on the Get With The Guidelines-Stroke (GWTG-Stroke) data set. RDD, based on regression, measures the occurrence of a discontinuity in an outcome (e.g., odds of home discharge) as a function of an intervention (e.g., alteplase) that becomes significantly more likely when crossing the threshold of a continuous variable that determines that intervention (e.g., time from symptom onset, since alteplase is only given if symptom onset is less than e.g., 3 h). The technique assumes that patients near either side of a threshold (e.g., 2.99 and 3.01 h from symptom onset) are indistinguishable other than the use of the treatment. We compared outcomes of patients whose estimated onset to treatment time fell on either side of the treatment threshold for three cohorts of patients in the GWTG-Stroke data set. This data set spanned three different treatment thresholds for alteplase (3 h, 2003–2007, N = 1,869; 3 h, 2009–2016, N = 13,086, and 4.5 h, 2009–2016, N = 6,550). Patient demographic characteristics were overall similar across the treatment thresholds. We did not find evidence of a discontinuity in clinical outcome at any treatment threshold attributable to alteplase. Potential reasons for failing to find an effect include violation of some RDD assumptions in clinical care, large sample sizes required, or already-well-chosen treatment threshold.
AB - Randomized Controlled Trials (RCTs) are considered the gold standard for measuring the efficacy of medical interventions. However, RCTs are expensive, and use a limited population. Techniques to estimate the effects of stroke interventions from observational data that minimize confounding would be useful. We used regression discontinuity design (RDD), a technique well-established in economics, on the Get With The Guidelines-Stroke (GWTG-Stroke) data set. RDD, based on regression, measures the occurrence of a discontinuity in an outcome (e.g., odds of home discharge) as a function of an intervention (e.g., alteplase) that becomes significantly more likely when crossing the threshold of a continuous variable that determines that intervention (e.g., time from symptom onset, since alteplase is only given if symptom onset is less than e.g., 3 h). The technique assumes that patients near either side of a threshold (e.g., 2.99 and 3.01 h from symptom onset) are indistinguishable other than the use of the treatment. We compared outcomes of patients whose estimated onset to treatment time fell on either side of the treatment threshold for three cohorts of patients in the GWTG-Stroke data set. This data set spanned three different treatment thresholds for alteplase (3 h, 2003–2007, N = 1,869; 3 h, 2009–2016, N = 13,086, and 4.5 h, 2009–2016, N = 6,550). Patient demographic characteristics were overall similar across the treatment thresholds. We did not find evidence of a discontinuity in clinical outcome at any treatment threshold attributable to alteplase. Potential reasons for failing to find an effect include violation of some RDD assumptions in clinical care, large sample sizes required, or already-well-chosen treatment threshold.
KW - alteplase
KW - causal inference
KW - ischemic stroke
KW - quasi-experiments
KW - regression discontinuity design
UR - http://www.scopus.com/inward/record.url?scp=85091014740&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091014740&partnerID=8YFLogxK
U2 - 10.3389/fneur.2020.00961
DO - 10.3389/fneur.2020.00961
M3 - Article
C2 - 32982952
AN - SCOPUS:85091014740
SN - 1664-2295
VL - 11
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 961
ER -