Predicting treatment plan approval probability for high-dose-rate brachytherapy of cervical cancer using adversarial deep learning

Yin Gao, Yesenia Gonzalez, Chika Nwachukwu, Kevin Albuquerque, Xun Jia

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Objective. Predicting the probability of having the plan approved by the physician is important for automatic treatment planning. Driven by the mathematical foundation of deep learning that can use a deep neural network to represent functions accurately and flexibly, we developed a deep-learning framework that learns the probability of plan approval for cervical cancer high-dose-rate brachytherapy (HDRBT). Approach. The system consisted of a dose prediction network (DPN) and a plan-approval probability network (PPN). DPN predicts organs at risk (OAR) D 2cc and CTV D 90% of the current fraction from the patient’s current anatomy and prescription dose of HDRBT. PPN outputs the probability of a given plan being acceptable to the physician based on the patients anatomy and the total dose combining HDRBT and external beam radiotherapy sessions. Training of the networks was achieved by first training them separately for a good initialization, and then jointly via an adversarial process. We collected approved treatment plans of 248 treatment fractions from 63 patients. Among them, 216 plans from 54 patients were employed in a four-fold cross validation study, and the remaining 32 plans from other 9 patients were saved for independent testing. Main results. DPN predicted equivalent dose of 2 Gy for bladder, rectum, sigmoid D 2cc and CTV D 90% with a relative error of 11.51% ± 6.92%, 8.23% ± 5.75%, 7.12% ± 6.00%, and 10.16% ± 10.42%, respectively. In a task that differentiates clinically approved plans and disapproved plans generated by perturbing doses in ground truth approved plans by 20%, PPN achieved accuracy, sensitivity, specificity, and area under the curve 0.70, 0.74, 0.65, and 0.74. Significance. We demonstrated the feasibility of developing a novel deep-learning framework that predicts a probability of plan approval for HDRBT of cervical cancer, which is an essential component in automatic treatment planning.

Original languageEnglish (US)
Article number095010
JournalPhysics in medicine and biology
Volume69
Issue number9
DOIs
StatePublished - May 7 2024

Keywords

  • deep learning
  • high dose rate brachytherapy
  • plan approval probability
  • treatment planning

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Predicting treatment plan approval probability for high-dose-rate brachytherapy of cervical cancer using adversarial deep learning'. Together they form a unique fingerprint.

Cite this