Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction

Robert L. McNamara, Kevin F. Kennedy, David J. Cohen, Deborah B. Diercks, Mauro Moscucci, Stephen Ramee, Tracy Y. Wang, Traci Connolly, John A. Spertus

Research output: Contribution to journalArticlepeer-review

159 Scopus citations


Background As a foundation for quality improvement, assessing clinical outcomes across hospitals requires appropriate risk adjustment to account for differences in patient case mix, including presentation after cardiac arrest. Objectives The aim of this study was to develop and validate a parsimonious patient-level clinical risk model of in-hospital mortality for contemporary patients with acute myocardial infarction. Methods Patient characteristics at the time of presentation in the ACTION (Acute Coronary Treatment and Intervention Outcomes Network) Registry–GWTG (Get With the Guidelines) database from January 2012 through December 2013 were used to develop a multivariate hierarchical logistic regression model predicting in-hospital mortality. The population (243,440 patients from 655 hospitals) was divided into a 60% sample for model derivation, with the remaining 40% used for model validation. A simplified risk score was created to enable prospective risk stratification in clinical care. Results The in-hospital mortality rate was 4.6%. Age, heart rate, systolic blood pressure, presentation after cardiac arrest, presentation in cardiogenic shock, presentation in heart failure, presentation with ST-segment elevation myocardial infarction, creatinine clearance, and troponin ratio were all independently associated with in-hospital mortality. The C statistic was 0.88, with good calibration. The model performed well in subgroups based on age; sex; race; transfer status; and the presence of diabetes mellitus, renal dysfunction, cardiac arrest, cardiogenic shock, and ST-segment elevation myocardial infarction. Observed mortality rates varied substantially across risk groups, ranging from 0.4% in the lowest risk group (score <30) to 49.5% in the highest risk group (score >59). Conclusions This parsimonious risk model for in-hospital mortality is a valid instrument for risk adjustment and risk stratification in contemporary patients with acute myocardial infarction.

Original languageEnglish (US)
Pages (from-to)626-635
Number of pages10
JournalJournal of the American College of Cardiology
Issue number6
StatePublished - Aug 9 2016


  • cardiac arrest
  • cardiogenic shock
  • creatinine clearance
  • model
  • risk prediction
  • systolic blood pressure

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction'. Together they form a unique fingerprint.

Cite this