Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain

Kanehiro Hayashi, Yong Pan, Hongjun Shu, Toshio Ohshima, Janice W. Kansy, Charles L. White, Carol A. Tamminga, André Sobel, Patrick A. Curmi, Katsuhiko Mikoshiba, James A. Bibb

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Regulation of cytoskeletal dynamics is essential to neuronal plasticity during development and adulthood. Dysregulation of these mechanisms may contribute to neuropsychiatric and neurodegenerative diseases. The neuronal protein kinase, cyclin-dependent kinase 5 (Cdk5), is involved in multiple aspects of neuronal function, including regulation of cytoskeleton. A neuroproteomic search identified the tubulin-binding protein, stathmin, as a novel Cdk5 substrate. Stathmin was phosphorylated by Cdk5 in vitro at Ser25 and Ser38, previously identified as mitogen-activated protein kinase (MAPK) and p38 MAPKδ sites. Cdk5 predominantly phosphorylated Ser38, while MAPK and p38 MAPKδ predominantly phosphorylated Ser25. Stathmin was phosphorylated at both sites in mouse brain, with higher levels in cortex and striatum. Cdk5 knockout mice exhibited decreased phospho-Ser38 levels. During development, phospho-Ser25 and -Ser38 levels peaked at post-natal day 7, followed by reduction in total stathmin. Inhibition of protein phosphatases in striatal slices caused an increase in phospho-Ser25 and a decrease in total stathmin. Interestingly, the prefrontal cortex of schizophrenic patients had increased phospho-Ser25 levels. In contrast, total and phospho-Ser25 stoichiometries were decreased in the hippocampus of Alzheimer's patients. Thus, microtubule regulatory mechanisms involving the phosphorylation of stathmin may contribute to developmental synaptic pruning and structural plasticity, and may be involved in neuropsychiatric and neurodegenerative disorders.

Original languageEnglish (US)
Pages (from-to)237-250
Number of pages14
JournalJournal of Neurochemistry
Issue number1
StatePublished - Oct 2006


  • Cyclin-dependent kinase 5
  • Mitogen-activated protein kinase
  • Phosphorylation
  • Stathmin
  • Striatum
  • p38 MAPKδ (stress-activated protein kinase 4)

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain'. Together they form a unique fingerprint.

Cite this