TY - JOUR
T1 - Multivalent binding and biomimetic cell rolling improves the sensitivity and specificity of circulating tumor cell capture
AU - Myung, Ja Hye
AU - Eblan, Michael J.
AU - Caster, Joseph M.
AU - Park, Sin Jung
AU - Poellmann, Michael J.
AU - Wang, Kyle
AU - Tam, Kevin A.
AU - Miller, Seth M.
AU - Shen, Colette
AU - Chen, Ronald C.
AU - Zhang, Tian
AU - Tepper, Joel E.
AU - Chera, Bhishamjit S.
AU - Wang, Andrew Z.
AU - Hong, Seungpyo
N1 - Funding Information:
This work was supported by National Cancer Institute (NCI)/National Institutes of Health (NIH) under grant # R01-CA182528 (to S. Hong) and National Science Foundation (NSF) under grant # DMR-1409161 (to S. Hong) as well as department research fund from University of North Carolina Department of Radiation Oncology. A.Z. Wang is supported by 1R01CA178748, R21CA182322, and U54CA198999 from NIH/NCI.
Publisher Copyright:
© 2018 American Association for Cancer Research.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Purpose: We aimed to examine the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of circulating tumor cell (CTC) capture. We also investigated the clinical significance of CTCs and their kinetic profiles in patients with cancer undergoing radiotherapy treatment. Experimental Design: Patients with histologically confirmed primary carcinoma undergoing radiotherapy, with or without chemotherapy, were eligible for enrollment. Peripheral blood was collected prospectively at up to five time points, including before radiotherapy, at the first week, mid-point and final week of treatment, as well as 4 to 12 weeks after completion of radiotherapy. CTC capture was accomplished using a nanotechnology-based assay (CapioCyte) functionalized with aEpCAM, aHER-2, and aEGFR. Results: CapioCyte was able to detect CTCs in all 24 cancer patients enrolled. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. We also showed that cell rolling effect can improve CTC capture specificity (% of captured cells that are CKþ/CD45/DAPIþ) up to 38%. Among the 18 patients with sequential CTC measurements, the median CTC decreased from 113 CTCs/mL before radiotherapy to 32 CTCs/mL at completion of radiotherapy (P ¼ 0.001). CTCs declined throughout radiotherapy in patients with complete clinical and/or radiographic response, in contrast with an elevation in CTCs at mid or post-radiotherapy in the two patients with known pathologic residual disease. Conclusions: Our study demonstrated that multivalent binding and cell rolling can improve the sensitivity and specificity of CTC capture compared with multivalent binding alone, allowing reliable monitoring of CTC changes during and after treatment.
AB - Purpose: We aimed to examine the effects of multivalent binding and biomimetic cell rolling on the sensitivity and specificity of circulating tumor cell (CTC) capture. We also investigated the clinical significance of CTCs and their kinetic profiles in patients with cancer undergoing radiotherapy treatment. Experimental Design: Patients with histologically confirmed primary carcinoma undergoing radiotherapy, with or without chemotherapy, were eligible for enrollment. Peripheral blood was collected prospectively at up to five time points, including before radiotherapy, at the first week, mid-point and final week of treatment, as well as 4 to 12 weeks after completion of radiotherapy. CTC capture was accomplished using a nanotechnology-based assay (CapioCyte) functionalized with aEpCAM, aHER-2, and aEGFR. Results: CapioCyte was able to detect CTCs in all 24 cancer patients enrolled. Multivalent binding via poly(amidoamine) dendrimers further improved capture sensitivity. We also showed that cell rolling effect can improve CTC capture specificity (% of captured cells that are CKþ/CD45/DAPIþ) up to 38%. Among the 18 patients with sequential CTC measurements, the median CTC decreased from 113 CTCs/mL before radiotherapy to 32 CTCs/mL at completion of radiotherapy (P ¼ 0.001). CTCs declined throughout radiotherapy in patients with complete clinical and/or radiographic response, in contrast with an elevation in CTCs at mid or post-radiotherapy in the two patients with known pathologic residual disease. Conclusions: Our study demonstrated that multivalent binding and cell rolling can improve the sensitivity and specificity of CTC capture compared with multivalent binding alone, allowing reliable monitoring of CTC changes during and after treatment.
UR - http://www.scopus.com/inward/record.url?scp=85048071011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048071011&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-17-3078
DO - 10.1158/1078-0432.CCR-17-3078
M3 - Article
C2 - 29545463
AN - SCOPUS:85048071011
SN - 1078-0432
VL - 24
SP - 2539
EP - 2547
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 11
ER -