Abstract
The ABCG1 homodimer (G1) and ABCG5–ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)–binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.
Original language | English (US) |
---|---|
Article number | e2110483118 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 118 |
Issue number | 34 |
DOIs | |
State | Published - Aug 24 2021 |
Keywords
- ABCG1
- ABCG5
- ABCG8
- Plant sterol
- Sitosterolemia
ASJC Scopus subject areas
- General