TY - JOUR
T1 - Local and global consequences of reward-evoked striatal dopamine release
AU - Li, Nan
AU - Jasanoff, Alan
N1 - Funding Information:
Acknowledgements This research was funded by National Institutes of Health grants R01 DA038642 and U01 NS103470 to A.J. N.L. was supported by a Stanley Fahn Research Fellowship from the Parkinson’s Disease Foundation. The authors thank T. Lee and L. Cai for initial assistance with the experimental methods; P. Bandettini for advice with multi-echo MRI acquisition; and A. Graybiel, S. Lall and I. Witten for comments on the data and manuscript.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/4/9
Y1 - 2020/4/9
N2 - The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli1. Neuroscientists have tried to define the functions of dopamine in concise conceptual terms2, but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied3, the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging4 and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.
AB - The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli1. Neuroscientists have tried to define the functions of dopamine in concise conceptual terms2, but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied3, the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging4 and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.
UR - http://www.scopus.com/inward/record.url?scp=85083218394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083218394&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2158-3
DO - 10.1038/s41586-020-2158-3
M3 - Article
C2 - 32269346
AN - SCOPUS:85083218394
SN - 0028-0836
VL - 580
SP - 239
EP - 244
JO - Nature
JF - Nature
IS - 7802
ER -