TY - JOUR
T1 - Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET
AU - Yang, Jaewon
AU - Park, Dookun
AU - Gullberg, Grant T.
AU - Seo, Youngho
N1 - Publisher Copyright:
© 2019 Institute of Physics and Engineering in Medicine.
PY - 2019/4/4
Y1 - 2019/4/4
N2 - Dedicated brain positron emission tomography (PET) devices can provide higher-resolution images with much lower doses compared to conventional whole-body PET systems, which is important to support PET neuroimaging and particularly useful for the diagnosis of neurodegenerative diseases. However, when a dedicated brain PET scanner does not come with a combined CT or transmission source, there is no direct solution for accurate attenuation and scatter correction, both of which are critical for quantitative PET. To address this problem, we propose joint attenuation and scatter correction (ASC) in image space for non-corrected PET (PETNC) using deep convolutional neural networks (DCNNs). This approach is a one-step process, distinct from conventional methods that rely on generating attenuation maps first that are then applied to iterative scatter simulation in sinogram space. For training and validation, time-of-flight PET/MR scans and additional helical CTs were performed for 35 subjects (25/10 split for training and test dataset). A DCNN model was proposed and trained to convert PETNC to DCNN-based ASC PET (PETDCNN) directly in image space. For quantitative evaluation, uptake differences between PETDCNN and reference CT-based ASC PET (PETCT-ASC) were computed for 116 automated anatomical labels (AALs) across 10 test subjects (1160 regions in total). MR-based ASC PET (PETMR-ASC), a current clinical protocol in PET/MR imaging, was another reference for comparison. Statistical significance was assessed using a paired t test. The performance of PETDCNN was comparable to that of PETMR-ASC, in comparison to reference PETCT-ASC. The mean SUV differences (mean ± SD) from PETCT-ASC were 4.0% ± 15.4% (P < 0.001) and -4.2% ± 4.3% (P < 0.001) for PETDCNN and PETMR-ASC, respectively. The overall larger variation of PETDCNN (15.4%) was prone to the subject with the highest mean difference (48.5% ± 10.4%). The mean difference of PETDCNN excluding the subject was substantially improved to -0.8% ± 5.2% (P < 0.001), which was lower than that of PETMR-ASC (-5.07% ± 3.60%, P < 0.001). In conclusion, we demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter using a DCNN (PETDCNN) from PETNC in image space without requiring conventional attenuation map generation and time-consuming scatter correction. Additionally, our DCNN-based method provides a possible alternative to MR-ASC for simultaneous PET/MRI.
AB - Dedicated brain positron emission tomography (PET) devices can provide higher-resolution images with much lower doses compared to conventional whole-body PET systems, which is important to support PET neuroimaging and particularly useful for the diagnosis of neurodegenerative diseases. However, when a dedicated brain PET scanner does not come with a combined CT or transmission source, there is no direct solution for accurate attenuation and scatter correction, both of which are critical for quantitative PET. To address this problem, we propose joint attenuation and scatter correction (ASC) in image space for non-corrected PET (PETNC) using deep convolutional neural networks (DCNNs). This approach is a one-step process, distinct from conventional methods that rely on generating attenuation maps first that are then applied to iterative scatter simulation in sinogram space. For training and validation, time-of-flight PET/MR scans and additional helical CTs were performed for 35 subjects (25/10 split for training and test dataset). A DCNN model was proposed and trained to convert PETNC to DCNN-based ASC PET (PETDCNN) directly in image space. For quantitative evaluation, uptake differences between PETDCNN and reference CT-based ASC PET (PETCT-ASC) were computed for 116 automated anatomical labels (AALs) across 10 test subjects (1160 regions in total). MR-based ASC PET (PETMR-ASC), a current clinical protocol in PET/MR imaging, was another reference for comparison. Statistical significance was assessed using a paired t test. The performance of PETDCNN was comparable to that of PETMR-ASC, in comparison to reference PETCT-ASC. The mean SUV differences (mean ± SD) from PETCT-ASC were 4.0% ± 15.4% (P < 0.001) and -4.2% ± 4.3% (P < 0.001) for PETDCNN and PETMR-ASC, respectively. The overall larger variation of PETDCNN (15.4%) was prone to the subject with the highest mean difference (48.5% ± 10.4%). The mean difference of PETDCNN excluding the subject was substantially improved to -0.8% ± 5.2% (P < 0.001), which was lower than that of PETMR-ASC (-5.07% ± 3.60%, P < 0.001). In conclusion, we demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter using a DCNN (PETDCNN) from PETNC in image space without requiring conventional attenuation map generation and time-consuming scatter correction. Additionally, our DCNN-based method provides a possible alternative to MR-ASC for simultaneous PET/MRI.
KW - attenuation correction
KW - brain FDG PET
KW - convolutional neural network/deep learning
KW - scatter correction
UR - http://www.scopus.com/inward/record.url?scp=85064239623&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064239623&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/ab0606
DO - 10.1088/1361-6560/ab0606
M3 - Article
C2 - 30743246
AN - SCOPUS:85064239623
SN - 0031-9155
VL - 64
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 7
M1 - 075019
ER -