TY - JOUR
T1 - Improved Efficacy of Synthesizing∗MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study
AU - Pérez-Malo, Marylaine
AU - Szabó, Gergely
AU - Eppard, Elisabeth
AU - Vagner, Adrienn
AU - Brücher, Ernö
AU - Tóth, Imre
AU - Maiocchi, Alessandro
AU - Suh, Eul Hyun
AU - Kovács, Zoltán
AU - Baranyai, Zsolt
AU - Rösch, Frank
N1 - Funding Information:
This project was carried out in the frame of the EU COST Action CA15209: European Network on NMR Relaxometry. Support by the EU and the European Regional Development Fund (Projects GINOP-2.3.2-15-2016-00008 and GINOP-2.3.3-15-2016-00004) are gratefully acknowledged. The89Y hyperpolarization experiments were supported by National Institutes of Health Grant P41-EB015908.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/5/21
Y1 - 2018/5/21
N2 - Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [68Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H2O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)]- (MIII= GaIII, CeIII, EuIII, YIII, and LuIII) complexes were investigated in H2O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H2O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K1H and log K2H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)]- complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H2DOTA)]+ intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H2O (M(HL)kH2O) and OH- (M(HL)kOH) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL)kH2O values increase from CeIII to LuIII. However, the logKM(HL)H protonation constants, analogous to the log KH2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
AB - Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [68Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H2O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)]- (MIII= GaIII, CeIII, EuIII, YIII, and LuIII) complexes were investigated in H2O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H2O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K1H and log K2H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)]- complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H2DOTA)]+ intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H2O (M(HL)kH2O) and OH- (M(HL)kOH) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL)kH2O values increase from CeIII to LuIII. However, the logKM(HL)H protonation constants, analogous to the log KH2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
UR - http://www.scopus.com/inward/record.url?scp=85047350225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047350225&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.8b00669
DO - 10.1021/acs.inorgchem.8b00669
M3 - Article
C2 - 29746106
AN - SCOPUS:85047350225
SN - 0020-1669
VL - 57
SP - 6107
EP - 6117
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 10
ER -