History of fatigue in multiple sclerosis is associated with grey matter atrophy

Miklos Palotai, Aria Nazeri, Michele Cavallari, Brian C. Healy, Bonnie Glanz, Stefan M. Gold, Howard L. Weiner, Tanuja Chitnis, Charles R.G. Guttmann

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Fatigue in multiple sclerosis (MS) has been associated with brain damage with low replicability. Temporal fatigue fluctuations have not been considered. We assessed whether sustained fatigue (SF) associates more strongly with grey matter (GM) changes than reversible fatigue (RF). Patients were stratified into three groups according to historical fatigue levels: SF (n = 30, i.e. patients who reported fatigue at the latest ≥2 assessments), RF (n = 31, i.e. patients not fatigued at the latest assessment, but reported fatigue previously), and never fatigued (NF, n = 37). Groups were compared for brain GM volume using cross-sectional voxel-based and volumetric analyses of 3T T1-weighted MRI. Confounding effects of depression and related medications were also investigated. SF and RF patients showed similar anatomical distribution of GM atrophy. While we robustly replicated the anatomical patterns of GM atrophy described in previous work, we also found an association between hippocampal atrophy and fatigue. Depression showed confounding effects in frontal, parietal, occipital, accumbal and thalamic regions. Assessed treatments showed confounding effects in frontal, parietal and striatal areas. Our results suggest that history of clinically-relevant fatigue in currently non-fatigued patients is associated with GM atrophy, potentially explaining inconsistent findings of previous studies that stratified patients using a single fatigue assessment.

Original languageEnglish (US)
Article number14781
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'History of fatigue in multiple sclerosis is associated with grey matter atrophy'. Together they form a unique fingerprint.

Cite this