Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion

Junmei Wang, George Krudy, Xiang Qun Xie, Chengde Wu, George Holland

Research output: Contribution to journalArticlepeer-review

62 Scopus citations


In this work, a genetic algorithm (GA) was applied to build up a set of QSPR (quantitative structure-property relationship) models for human absolute oral bioavailability, plasma protein binding, and urinary excretion using the counts of molecular fragments as descriptors. For a pharmacokinetic property, the consensus score of a set of models (20 or 30) was found to improve the correlation coefficient and reduce the standard error significantly. Key fragments that may boost or reduce pharmacokinetic properties were also identified. Databases searches were performed for a set of key fragments identified by bioavailability models. The percentage of hit rates of bioavailability-boosting fragments were significantly higher than those of bioavailability-reducing fragments for MDDR (MDL Drug Data Report), a database of drugs and drug leads entered or entering development. On the other hand, the opposite trend was observed for ACD (Available Chemicals Directory), a database of all kinds of available compounds.

Original languageEnglish (US)
Pages (from-to)2674-2683
Number of pages10
JournalJournal of Chemical Information and Modeling
Issue number6
StatePublished - Nov 2006

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Computer Science Applications
  • Library and Information Sciences


Dive into the research topics of 'Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion'. Together they form a unique fingerprint.

Cite this