Abstract
Autophagy is an important intracellular catabolic mechanism involved in the removal of misfolded proteins. Atg14L, the mammalian orthologue of Atg14 in yeast and a critical regulator of autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. However, it is not clear how Atg14L is regulated. Here we demonstrate that ubiquitination and degradation of Atg14L is controlled by ZBTB16-Cullin3-Roc1 E3 ubiquitin ligase complex. Furthermore, we show that a wide range of GPCR ligands and agonists regulate the levels of Atg14L through ZBTB16. In addition, we show that the activation of autophagy by pharmacological inhibition of GPCR reduces the accumulation of misfolded proteins and protects against behavior dysfunction in a mouse model of Huntington’s disease. Our study demonstrates a common molecular mechanism by which the activation of GPCRs leads to the suppression of autophagy and a pharmacological strategy to activate autophagy in the CNS for the treatment of neurodegenerative diseases.
Original language | English (US) |
---|---|
Article number | e06734 |
Journal | eLife |
Volume | 2015 |
Issue number | 4 |
DOIs | |
State | Published - Mar 30 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Neuroscience(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)