Fully Utilizing Contrast Enhancement on Lung Tissue as a Novel Basis Material for Lung Nodule Characterization by Multi-energy CT

Shaojie Chang, Yongfeng Gao, Marc J. Pomeroy, Ti Bai, Hao Zhang, Zhengrong Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Based on well-established X-ray physics in computed tomography (CT) imaging, the spectral responses of different materials contained in lesions are different, which brings richer contrast information at various energy bins. Hence, obtaining the material decomposition of different tissue types and exploring its spectral information for lesion diagnosis becomes extremely valuable. The lungs are housed within the torso and consist of three natural materials, i.e., soft tissue, bone, and lung tissue. To benefit the lung nodule differentiation, this study innovatively proposed to use lung tissue as one basis material along with soft tissue and bone. This set of basis materials will yield a more accurate composition analysis of lung nodules and benefit the following differentiation. Moreover, a corresponding machine learning (ML)-based computer-aided diagnosis framework for lung nodule classification is also proposed and used for evaluation. Experimental results show the advantages of the virtual monoenergetic images (VMIs) generated with lung tissue material over the VMIs without lung tissue and conventional CT images in differentiating the malignancy from benign lung nodules. The gain of 9.63% in area under the receiver operating characteristic curve (AUC) scores indicated that the energy-enhanced tissue features from lung tissue have a great potential to improve lung nodule diagnosis performance.

Original languageEnglish (US)
Title of host publication7th International Conference on Image Formation in X-Ray Computed Tomography
EditorsJoseph Webster Stayman
PublisherSPIE
ISBN (Electronic)9781510656697
DOIs
StatePublished - 2022
Event7th International Conference on Image Formation in X-Ray Computed Tomography - Virtual, Online
Duration: Jun 12 2022Jun 16 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12304
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference7th International Conference on Image Formation in X-Ray Computed Tomography
CityVirtual, Online
Period6/12/226/16/22

Keywords

  • Computer-aided diagnosis
  • Machine learning
  • Malignant
  • Multi-energy CT reconstruction
  • benign differentiation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Fully Utilizing Contrast Enhancement on Lung Tissue as a Novel Basis Material for Lung Nodule Characterization by Multi-energy CT'. Together they form a unique fingerprint.

Cite this