FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation

Dailu Chen, Sofia Bali, Ruhar Singh, Aleksandra Wosztyl, Vishruth Mullapudi, Jaime Vaquer-Alicea, Parvathy Jayan, Shamiram Melhem, Harro Seelaar, John C. van Swieten, Marc I. Diamond, Lukasz A. Joachimiak

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.

Original languageEnglish (US)
Article number1625
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation'. Together they form a unique fingerprint.

Cite this