Abstract
Bacterial lipopolysaccharide (LPS) and an N-formyl peptide, N-formyl-neoleucyl-leucyl-phenylalanine (FNLP), synergistically promote lung injury in rats as measured by 125I-labeled albumin flux. Concomitantly, neutrophils are sequestered in the lung. We hypothesized that LPS-FNLP-induced lung injury is mediated both by neutrophil-dependent and -independent mechanisms. Rats were depleted of circulating and marginating neutrophils with vinblastine. LPS-FNLP-induced lung protein leak was partially decreased in these neutrophil-depleted animals, although a component of lung injury remained. We hypothesized that LPS-FNLP-induced lung injury was also mediated by xanthine oxidase (XO). Rats were fed a tungsten-enriched diet that inactivates molybdenum-dependent oxidase systems. LPS-FNLP-induced lung leak was partially decreased in these animals as well. When tungsten-fed rats were also neutrophil depleted with vinblastine, no increase in 125I-albumin flux was observed in response to LPS-FNLP. In parallel experiments, lungs from vinblastine-pretreated rats were isolated and perfused. FNLP infusion into the LPS-primed, crystalloid-perfused lungs caused increased 125I-albumin flux, which was prevented by oxidase inhibition. We conclude that LPS-FNLP-induced lung injury is both neutrophil mediated and neutrophil independent. The nonneutrophil component of the LPS-FNLP-induced lung injury appears to be pulmonary XO derived and dependent.
Original language | English (US) |
---|---|
Pages (from-to) | R413-R420 |
Journal | American Journal of Physiology - Regulatory Integrative and Comparative Physiology |
Volume | 260 |
Issue number | 2 29-2 |
DOIs | |
State | Published - 1991 |
Keywords
- Endothelial cell
- N-formyl-neoleucyl-leucyl-phenylalanine
- Neutrophil depletion
- Primed activation
- Synergy
- Xanthine oxidase
ASJC Scopus subject areas
- Physiology
- Physiology (medical)