Entanglement entropy and multifractality at localization transitions

Xun Jia, Arvind R. Subramaniam, Ilya A. Gruzberg, Sudip Chakravarty

Research output: Contribution to journalArticlepeer-review

58 Scopus citations


The von Neumann entanglement entropy is a useful measure to characterize a quantum phase transition. We investigate the nonanalyticity of this entropy at disorder-dominated quantum phase transitions in noninteracting electronic systems. At these critical points, the von Neumann entropy is determined by the single particle wave function intensity, which exhibits complex scale invariant fluctuations. We find that the concept of multifractality is naturally suited for studying von Neumann entropy of the critical wave functions. Our numerical simulations of the three dimensional Anderson localization transition and the integer quantum Hall plateau transition show that the entanglement at these transitions is well described using multifractal analysis.

Original languageEnglish (US)
Article number014208
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number1
StatePublished - Jan 25 2008

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Entanglement entropy and multifractality at localization transitions'. Together they form a unique fingerprint.

Cite this