Energy-resolved coherent diffraction from laser-driven electronic motion in atoms

Hua Chieh Shao, Anthony F. Starace

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2s-2p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

Original languageEnglish (US)
Article number042706
JournalPhysical Review A
Volume96
Issue number4
DOIs
StatePublished - Oct 12 2017
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Energy-resolved coherent diffraction from laser-driven electronic motion in atoms'. Together they form a unique fingerprint.

Cite this