DTI template-based estimation of cardiac fiber orientations from 3D ultrasound

Xulei Qin, Baowei Fei

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Purpose: Cardiac muscle fibers directly affect the mechanical, physiological, and pathological properties of the heart. Patient-specific quantification of cardiac fiber orientations is an important but difficult problem in cardiac imaging research. In this study, the authors proposed a cardiac fiber orientation estimation method based on three-dimensional (3D) ultrasound images and a cardiac fiber template that was obtained from magnetic resonance diffusion tensor imaging (DTI). Methods: A DTI template-based framework was developed to estimate cardiac fiber orientations from 3D ultrasound images using an animal model. It estimated the cardiac fiber orientations of the target heart by deforming the fiber orientations of the template heart, based on the deformation field of the registration between the ultrasound geometry of the target heart and the MRI geometry of the template heart. In the experiments, the animal hearts were imaged by high-frequency ultrasound, T1-weighted MRI, and high-resolution DTI. Results: The proposed method was evaluated by four different parameters: Dice similarity coefficient (DSC), target errors, acute angle error (AAE), and inclination angle error (IAE). Its ability of estimating cardiac fiber orientations was first validated by a public database. Then, the performance of the proposed method on 3D ultrasound data was evaluated by an acquired database. Their average values were 95.4%±2.0% for the DSC of geometric registrations, 21.0°±0.76° for AAE, and 19.4°±1.2° for IAE of fiber orientation estimations. Furthermore, the feasibility of this framework was also performed on 3D ultrasound images of a beating heart. Conclusions: The proposed framework demonstrated the feasibility of using 3D ultrasound imaging to estimate cardiac fiber orientation of in vivo beating hearts and its further improvements could contribute to understanding the dynamic mechanism of the beating heart and has the potential to help diagnosis and therapy of heart disease.

Original languageEnglish (US)
Pages (from-to)2915-2924
Number of pages10
JournalMedical physics
Issue number6
StatePublished - Jun 1 2015
Externally publishedYes


  • 3D ultrasound imaging
  • cardiac fiber orientation
  • deformable image registration
  • heart failure
  • magnetic resonance diffusion tensor imaging (MR-DTI)

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'DTI template-based estimation of cardiac fiber orientations from 3D ultrasound'. Together they form a unique fingerprint.

Cite this