Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex

Yohei Shinmyo, M. Asrafuzzaman Riyadh, Giasuddin Ahmed, Iftekhar Bin Naser, Mahmud Hossain, Hirohide Takebayashi, Hiroshi Kawasaki, Kunimasa Ohta, Hideaki Tanaka

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The thalamocortical tract carries sensory information to the neocortex. It has long been recognized that the neocortical pioneer axons of subplate neurons are essential for thalamocortical development. Herein we report that an axon guidance cue, draxin, is expressed in early-born neocortical neurons, including subplate neurons, and is necessary for thalamocortical development. In draxin-/- mice, thalamocortical axons do not enter the neocortex. This phenotype is sufficiently rescued by the transgenic expression of draxin in neocortical neurons. Genetic interaction data suggest that draxin acts through Deleted in colorectal cancer (DCC) and Neogenin (Neo1), to regulate thalamocortical projections in vivo. Draxin promotes the outgrowth of thalamic axons in vitro and this effect is abolished in thalamic neurons from Dcc and Neo1 double mutants. These results suggest that draxin from neocortical neurons controls thalamocortical projections into the neocortex, and that this effect is mediated through the DCC and Neo1 receptors.

Original languageEnglish (US)
Article number10232
JournalNature communications
Volume6
DOIs
StatePublished - 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Draxin from neocortical neurons controls the guidance of thalamocortical projections into the neocortex'. Together they form a unique fingerprint.

Cite this