Dosimetric characterization of a new surface-conforming electron MLC prototype

Holly M. Paschal, Christopher N. Kabat, Thomas Martin, Daniel Saenz, Pamela Myers, Karl Rasmussen, Sotirios Stathakis, Mark Bonnen, Nikos Papanikolaou, Neil Kirby

Research output: Contribution to journalArticlepeer-review

Abstract

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.

Original languageEnglish (US)
Article numbere14173
JournalJournal of applied clinical medical physics
Volume25
Issue number2
DOIs
StatePublished - Feb 2024
Externally publishedYes

Keywords

  • electron therapy
  • multi-leaf collimator
  • skin collimation

ASJC Scopus subject areas

  • Radiation
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Dosimetric characterization of a new surface-conforming electron MLC prototype'. Together they form a unique fingerprint.

Cite this