TY - JOUR
T1 - Development and Validation of a Nomogram Prognostic Model for SCLC Patients
AU - Wang, Shidan
AU - Yang, Lin
AU - Ci, Bo
AU - Maclean, Matthew
AU - Gerber, David E.
AU - Xiao, Guanghua
AU - Xie, Yang
N1 - Funding Information:
This work was supported by the National Institutes of Health ( 5R01CA152301 , P50CA70907 , 5P30CA142543 , 1R01GM115473 , K24CA201543 and 1R01CA172211 ); and the Cancer Prevention and Research Institute of Texas ( RP120732 ). The NCDB is a joint project of the Commission on Cancer of the American College of Surgeons and the American Cancer Society. The data used in this study is derived from a de-identified NCDB file. The American College of Surgeons and the Commission on Cancer have not verified and are not responsible for the analytic or statistical methodology used, or the conclusions drawn from this data by the investigators.
Publisher Copyright:
© 2018 International Association for the Study of Lung Cancer
PY - 2018/9
Y1 - 2018/9
N2 - Introduction: SCLC accounts for almost 15% of lung cancer cases in the United States. Nomogram prognostic models could greatly facilitate risk stratification and treatment planning, as well as more refined enrollment criteria for clinical trials. We developed and validated a new nomogram prognostic model for SCLC patients using a large SCLC patient cohort from the National Cancer Database (NCDB). Methods: Clinical data for 24,680 SCLC patients diagnosed from 2004 to 2011 were used to develop the nomogram prognostic model. The model was then validated using an independent cohort of 9700 SCLC patients diagnosed from 2012 to 2013. The prognostic performance was evaluated using p value, concordance index and integrated area under the (time-dependent receiver operating characteristic) curve (AUC). Results: The following variables were contained in the final prognostic model: age, sex, race, ethnicity, Charlson/Deyo score, TNM stage (assigned according to the American Joint Committee on Cancer [AJCC] eighth edition), treatment type (combination of surgery, radiation therapy, and chemotherapy), and laterality. The model was validated in an independent testing group with a concordance index of 0.722 ± 0.004 and an integrated area under the curve of 0.79. The nomogram model has a significantly higher prognostic accuracy than previously developed models, including the AJCC eighth edition TNM-staging system. We implemented the proposed nomogram and four previously published nomograms in an online webserver. Conclusions: We developed a nomogram prognostic model for SCLC patients, and validated the model using an independent patient cohort. The nomogram performs better than earlier models, including models using AJCC staging.
AB - Introduction: SCLC accounts for almost 15% of lung cancer cases in the United States. Nomogram prognostic models could greatly facilitate risk stratification and treatment planning, as well as more refined enrollment criteria for clinical trials. We developed and validated a new nomogram prognostic model for SCLC patients using a large SCLC patient cohort from the National Cancer Database (NCDB). Methods: Clinical data for 24,680 SCLC patients diagnosed from 2004 to 2011 were used to develop the nomogram prognostic model. The model was then validated using an independent cohort of 9700 SCLC patients diagnosed from 2012 to 2013. The prognostic performance was evaluated using p value, concordance index and integrated area under the (time-dependent receiver operating characteristic) curve (AUC). Results: The following variables were contained in the final prognostic model: age, sex, race, ethnicity, Charlson/Deyo score, TNM stage (assigned according to the American Joint Committee on Cancer [AJCC] eighth edition), treatment type (combination of surgery, radiation therapy, and chemotherapy), and laterality. The model was validated in an independent testing group with a concordance index of 0.722 ± 0.004 and an integrated area under the curve of 0.79. The nomogram model has a significantly higher prognostic accuracy than previously developed models, including the AJCC eighth edition TNM-staging system. We implemented the proposed nomogram and four previously published nomograms in an online webserver. Conclusions: We developed a nomogram prognostic model for SCLC patients, and validated the model using an independent patient cohort. The nomogram performs better than earlier models, including models using AJCC staging.
KW - Nomogram prognostic model
KW - Patient prognosis
KW - SCLC
UR - http://www.scopus.com/inward/record.url?scp=85052333057&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052333057&partnerID=8YFLogxK
U2 - 10.1016/j.jtho.2018.05.037
DO - 10.1016/j.jtho.2018.05.037
M3 - Article
C2 - 29902534
AN - SCOPUS:85052333057
SN - 1556-0864
VL - 13
SP - 1338
EP - 1348
JO - Journal of Thoracic Oncology
JF - Journal of Thoracic Oncology
IS - 9
ER -