TY - JOUR
T1 - Development and validation of a model to predict cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease
AU - Stevens, Susanna R.
AU - Segar, Matthew W.
AU - Pandey, Ambarish
AU - Lokhnygina, Yuliya
AU - Green, Jennifer B.
AU - McGuire, Darren K.
AU - Standl, Eberhard
AU - Peterson, Eric D.
AU - Holman, Rury R.
N1 - Funding Information:
The TECOS trial was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
Funding Information:
MWS has received personal fees from Merck & Co. YL has received grants from Merck, Janssen Research & Development, AstraZeneca, GlaxoSmithKline, and Bayer HealthCare AG. JBG has received grants from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline and Sanofi, and personal fees from AstraZeneca, Merck, Boehringer-Ingelheim, Sanofi/Regeneron, and NovoNordisk. DKM has received honoraria for clinical trial leadership for Lilly US, AstraZeneca, Sanofi, Janssen, Boehringer Ingelheim, Merck & Co, Novo Nordisk, Lexicon, Eisai, GlaxoSmithKline, CSL Behring and Esperion, and for consultancy for Afimmune, AstraZeneca, Sanofi, Lilly US, Boehringer Ingelheim, Merck & Co, Pfizer, Novo Nordisk, Applied Therapeutics, and Metavant. ES reports personal fees from the Oxford Diabetes Trials Unit, AstraZeneca, Bayer, Berlin Chemie, Boehringer Ingelheim, Menarini, Merck Serono, Excemed, Novartis, NovoNordisk, and Sanofi. EDP has received grant support from Janssen, Merck, Sanofi, AstraZeneca, Genentech, and Amgen; and has had consulting associations with Bayer, Merck, Sanofi, and Janssen. RRH reports research support from AstraZeneca, Bayer and Merck Sharp & Dohme, and personal fees from Anji Pharmacueticals, Bayer, Novartis and Novo Nordisk. All other authors report no disclosures or conflicts of interest.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Among individuals with atherosclerotic cardiovascular disease (ASCVD), type 2 diabetes mellitus (T2DM) is common and confers increased risk for morbidity and mortality. Differentiating risk is key to optimize efficiency of treatment selection. Our objective was to develop and validate a model to predict risk of major adverse cardiovascular events (MACE) comprising the first event of cardiovascular death, myocardial infarction (MI), or stroke for individuals with both T2DM and ASCVD. Methods: Using data from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS), we used Cox proportional hazards models to predict MACE among participants with T2DM and ASCVD. All baseline covariates collected in the trial were considered for inclusion, although some were excluded immediately because of large missingness or collinearity. A full model was developed using stepwise selection in each of 25 imputed datasets, and comprised candidate variables selected in 20 of the 25 datasets. A parsimonious model with a maximum of 10 degrees of freedom was created using Cox models with least absolute shrinkage and selection operator (LASSO), where the adjusted R-square was used as criterion for selection. The model was then externally validated among a cohort of participants with similar criteria in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial. Discrimination of both models was assessed using Harrell’s C-index and model calibration by the Greenwood-Nam-D’Agostino statistic based on 4-year event rates. Results: Overall, 1491 (10.2%) of 14,671 participants in TECOS and 130 (9.3%) in the ACCORD validation cohort (n = 1404) had MACE over 3 years’ median follow-up. The final model included 9 characteristics (prior stroke, age, chronic kidney disease, prior MI, sex, heart failure, insulin use, atrial fibrillation, and microvascular complications). The model had moderate discrimination in both the internal and external validation samples (C-index = 0.65 and 0.61, respectively). The model was well calibrated across the risk spectrum—from a cumulative MACE rate of 6% at 4 years in the lowest risk quintile to 26% in the highest risk quintile. Conclusion: Among patients with T2DM and prevalent ASCVD, this 9-factor risk model can quantify the risk of future ASCVD complications and inform decision making for treatments and intensity.
AB - Background: Among individuals with atherosclerotic cardiovascular disease (ASCVD), type 2 diabetes mellitus (T2DM) is common and confers increased risk for morbidity and mortality. Differentiating risk is key to optimize efficiency of treatment selection. Our objective was to develop and validate a model to predict risk of major adverse cardiovascular events (MACE) comprising the first event of cardiovascular death, myocardial infarction (MI), or stroke for individuals with both T2DM and ASCVD. Methods: Using data from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS), we used Cox proportional hazards models to predict MACE among participants with T2DM and ASCVD. All baseline covariates collected in the trial were considered for inclusion, although some were excluded immediately because of large missingness or collinearity. A full model was developed using stepwise selection in each of 25 imputed datasets, and comprised candidate variables selected in 20 of the 25 datasets. A parsimonious model with a maximum of 10 degrees of freedom was created using Cox models with least absolute shrinkage and selection operator (LASSO), where the adjusted R-square was used as criterion for selection. The model was then externally validated among a cohort of participants with similar criteria in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial. Discrimination of both models was assessed using Harrell’s C-index and model calibration by the Greenwood-Nam-D’Agostino statistic based on 4-year event rates. Results: Overall, 1491 (10.2%) of 14,671 participants in TECOS and 130 (9.3%) in the ACCORD validation cohort (n = 1404) had MACE over 3 years’ median follow-up. The final model included 9 characteristics (prior stroke, age, chronic kidney disease, prior MI, sex, heart failure, insulin use, atrial fibrillation, and microvascular complications). The model had moderate discrimination in both the internal and external validation samples (C-index = 0.65 and 0.61, respectively). The model was well calibrated across the risk spectrum—from a cumulative MACE rate of 6% at 4 years in the lowest risk quintile to 26% in the highest risk quintile. Conclusion: Among patients with T2DM and prevalent ASCVD, this 9-factor risk model can quantify the risk of future ASCVD complications and inform decision making for treatments and intensity.
KW - Atherosclerotic cardiovascular disease
KW - Major adverse cardiovascular events
KW - Risk modeling
KW - Type 2 diabetes mellitus
UR - http://www.scopus.com/inward/record.url?scp=85137135260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137135260&partnerID=8YFLogxK
U2 - 10.1186/s12933-022-01603-8
DO - 10.1186/s12933-022-01603-8
M3 - Article
C2 - 36030198
AN - SCOPUS:85137135260
SN - 1475-2840
VL - 21
JO - Cardiovascular Diabetology
JF - Cardiovascular Diabetology
IS - 1
M1 - 166
ER -