TY - JOUR
T1 - Design of a Small-Molecule Drug Conjugate for Prostate Cancer Targeted Theranostics
AU - Kumar, Amit
AU - Mastren, Tara
AU - Wang, Bin
AU - Hsieh, Jer Tsong
AU - Hao, Guiyang
AU - Sun, Xiankai
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/7/20
Y1 - 2016/7/20
N2 - Targeted therapy has become an effective strategy of precision medicine for cancer treatment. Based on the success of antibody-drug conjugates (ADCs), here we report a theranostic design of small-molecule drug conjugates (T-SMDCs) for targeted imaging and chemotherapy of prostate cancer. The structure of T-SMDCs built upon a polyethylene glycol (PEG) scaffold consists of (i) a chelating moiety for positron emission tomography (PET) imaging when labeled with 68Ga, a positron-emitting radioisotope; (ii) a prostate specific membrane antigen (PSMA) specific ligand for prostate cancer targeting; and (iii) a cytotoxic drug (DM1) for chemotherapy. For proof-of-concept, such a T-SMDC, NO3A-DM1-Lys-Urea-Glu, was synthesized and evaluated. The chemical modification of Lys-Urea-Glu for the construction of the conjugate did not compromise its specific binding affinity to PSMA. The PSMA-mediated internalization of 68Ga-labeled NO3A-DM1-Lys-Urea-Glu displayed a time-dependent manner, allowing the desired drug delivery and release within tumor cells. The antiproliferative activity of the T-SMDC showed a positive correlation with the PSMA expression level. Small animal PET imaging with 68Ga-labeled NO3A-DM1-Lys-Urea-Glu exhibited significantly higher uptake (p < 0.01) in the PSMA positive PC3-PIP tumors (4.30 ± 0.20%ID/g) at 1 h postinjection than in the PSMA negative PC3-Flu tumors (1.12 ± 0.42%ID/g). Taken together, we have successfully designed and synthesized a T-SMDC system for prostate cancer targeted imaging and therapy.
AB - Targeted therapy has become an effective strategy of precision medicine for cancer treatment. Based on the success of antibody-drug conjugates (ADCs), here we report a theranostic design of small-molecule drug conjugates (T-SMDCs) for targeted imaging and chemotherapy of prostate cancer. The structure of T-SMDCs built upon a polyethylene glycol (PEG) scaffold consists of (i) a chelating moiety for positron emission tomography (PET) imaging when labeled with 68Ga, a positron-emitting radioisotope; (ii) a prostate specific membrane antigen (PSMA) specific ligand for prostate cancer targeting; and (iii) a cytotoxic drug (DM1) for chemotherapy. For proof-of-concept, such a T-SMDC, NO3A-DM1-Lys-Urea-Glu, was synthesized and evaluated. The chemical modification of Lys-Urea-Glu for the construction of the conjugate did not compromise its specific binding affinity to PSMA. The PSMA-mediated internalization of 68Ga-labeled NO3A-DM1-Lys-Urea-Glu displayed a time-dependent manner, allowing the desired drug delivery and release within tumor cells. The antiproliferative activity of the T-SMDC showed a positive correlation with the PSMA expression level. Small animal PET imaging with 68Ga-labeled NO3A-DM1-Lys-Urea-Glu exhibited significantly higher uptake (p < 0.01) in the PSMA positive PC3-PIP tumors (4.30 ± 0.20%ID/g) at 1 h postinjection than in the PSMA negative PC3-Flu tumors (1.12 ± 0.42%ID/g). Taken together, we have successfully designed and synthesized a T-SMDC system for prostate cancer targeted imaging and therapy.
UR - http://www.scopus.com/inward/record.url?scp=84979645676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979645676&partnerID=8YFLogxK
U2 - 10.1021/acs.bioconjchem.6b00222
DO - 10.1021/acs.bioconjchem.6b00222
M3 - Article
C2 - 27248781
AN - SCOPUS:84979645676
SN - 1043-1802
VL - 27
SP - 1681
EP - 1689
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 7
ER -