TY - GEN
T1 - Design and Development of a Compact High-Resolution Detector for PET Insert in Small Animal Irradiator
AU - Cheng, Xinyi
AU - Hu, Kun
AU - Yang, Dongxu
AU - Shao, Yiping
N1 - Publisher Copyright:
© 2020 IEEE
PY - 2020
Y1 - 2020
N2 - We report the development of a compact high-resolution detector for a positron emission tomography (PET) insert in small animal irradiator. The detector consists of 4 sub-detectors; each sub-detector consists of a 15×15 array of 1×1×20 mm3 LYSO scintillators with each array end coupled to an 8×8 array of 2×2 mm2 silicon photomultipliers for depth-of-interaction (DOI) measurement; all sides of scintillators were roughed with a 0.03 mm surface lapping for balanced detector performance. Based on row and column signal readout, only 64-ch electronics is required to process 512-ch output of each detector. A compact 96-ch electronics board was developed to measure the charge, timing, and position of each interaction and convert them into digital output pulses for further processing. The detector performance evaluation study shows an average ~26.3% energy resolution, ~3.2 ns coincidence timing resolution, and ~3.2 mm DOI resolution from all crystals. All scintillators are well identified. The maximum throughput of the detector is ~200 K events/s.
AB - We report the development of a compact high-resolution detector for a positron emission tomography (PET) insert in small animal irradiator. The detector consists of 4 sub-detectors; each sub-detector consists of a 15×15 array of 1×1×20 mm3 LYSO scintillators with each array end coupled to an 8×8 array of 2×2 mm2 silicon photomultipliers for depth-of-interaction (DOI) measurement; all sides of scintillators were roughed with a 0.03 mm surface lapping for balanced detector performance. Based on row and column signal readout, only 64-ch electronics is required to process 512-ch output of each detector. A compact 96-ch electronics board was developed to measure the charge, timing, and position of each interaction and convert them into digital output pulses for further processing. The detector performance evaluation study shows an average ~26.3% energy resolution, ~3.2 ns coincidence timing resolution, and ~3.2 mm DOI resolution from all crystals. All scintillators are well identified. The maximum throughput of the detector is ~200 K events/s.
UR - http://www.scopus.com/inward/record.url?scp=85124693142&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124693142&partnerID=8YFLogxK
U2 - 10.1109/NSS/MIC42677.2020.9507765
DO - 10.1109/NSS/MIC42677.2020.9507765
M3 - Conference contribution
AN - SCOPUS:85124693142
T3 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020
BT - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020
Y2 - 31 October 2020 through 7 November 2020
ER -