Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass

Se Hwan Mun, Hee Yeon Won, Paula Hernandez, Hector Leonardo Aguila, Sun Kyeong Lee

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


CD74 is a type II transmembrane protein that can act as a receptor for macrophage migration inhibitory factor (MIF) and plays a role in MIF-regulated responses. We reported that MIF inhibited osteoclast formation and MIF knockout (KO) mice had decreased bone mass. We therefore examined if CD74 was involved in the ability of MIF to alter osteoclastogenesis in cultured bone marrow (BM) from wild-type (WT) and CD74-deficient (KO) male mice. We also measured the bone phenotype of CD74 KO male mice. Bone mass in the femur of 8-week-old mice was measured by micro-computed tomography and histomorphometry. Bone marrow cells from CD74 KO mice formed 15% more osteoclast-like cells (OCLs) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) (both at 30 ng/mL) compared to WT. Addition of MIF to WT cultures inhibited OCL formation by 16% but had no effect on CD74KO cultures. The number of colony forming unit granulocyte-macrophage (CFU-GM) in the bone marrow of CD74 KO mice was 26% greater than in WT controls. Trabecular bone volume (TBV) in the femurs of CD74 KO male mice was decreased by 26% compared to WT. In addition, cortical area and thickness were decreased by 14% and 11%, respectively. Histomorphometric analysis demonstrated that tartrate-resistant acid phosphatase (TRAP)(+) osteoclast number and area were significantly increased in CD74 KO by 35% and 43%, respectively compared to WT. Finally, we examined the effect of MIF on RANKL-induced-signaling pathways in bone marrow macrophage (BMM) cultures. MIF treatment decreased RANKL-induced nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c-Fos protein in BMM cultures by 70% and 41%, respectively. Our data demonstrate that CD74 is required for MIF to affect in vitro osteoclastogenesis. Further, the bone phenotype of CD74 KO mice is similar to that of MIF KO mice. MIF treatment of WT cultures suppressed RANKL-induced activator protein 1 (AP-1) expression, which resulted in decreased osteoclast differentiation in vitro. We propose that CD74 plays a critical role in the MIF inhibition of osteoclastogenesis.

Original languageEnglish (US)
Pages (from-to)948-959
Number of pages12
JournalJournal of Bone and Mineral Research
Issue number4
StatePublished - Apr 2013
Externally publishedYes


  • CD74
  • MIF
  • bone
  • osteoclast

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Orthopedics and Sports Medicine


Dive into the research topics of 'Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass'. Together they form a unique fingerprint.

Cite this