Deep learning in digital pathology for personalized treatment plans of cancer patients

Research output: Contribution to journalReview articlepeer-review

10 Scopus citations

Abstract

Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.

Original languageEnglish (US)
Pages (from-to)109-119
Number of pages11
JournalSeminars in Diagnostic Pathology
Volume40
Issue number2
DOIs
StatePublished - Mar 2023

Keywords

  • Artificial intelligence
  • Deep learning
  • Digital pathology
  • Pathology image analysis
  • Precision medicine
  • Predictive biomarker
  • Treatment selection

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Fingerprint

Dive into the research topics of 'Deep learning in digital pathology for personalized treatment plans of cancer patients'. Together they form a unique fingerprint.

Cite this