Decoding and geometry of ten finger movements in human posterior parietal cortex and motor cortex

Charles Guan, Tyson Aflalo, Kelly Kadlec, Jorge Gámez de Leon, Emily R. Rosario, Ausaf Bari, Nader Pouratian, Richard A. Andersen

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Objective. Enable neural control of individual prosthetic fingers for participants with upper-limb paralysis. Approach. Two tetraplegic participants were each implanted with a 96-channel array in the left posterior parietal cortex (PPC). One of the participants was additionally implanted with a 96-channel array near the hand knob of the left motor cortex (MC). Across tens of sessions, we recorded neural activity while the participants attempted to move individual fingers of the right hand. Offline, we classified attempted finger movements from neural firing rates using linear discriminant analysis with cross-validation. The participants then used the neural classifier online to control individual fingers of a brain-machine interface (BMI). Finally, we characterized the neural representational geometry during individual finger movements of both hands. Main Results. The two participants achieved 86% and 92% online accuracy during BMI control of the contralateral fingers (chance = 17%). Offline, a linear decoder achieved ten-finger decoding accuracies of 70% and 66% using respective PPC recordings and 75% using MC recordings (chance = 10%). In MC and in one PPC array, a factorized code linked corresponding finger movements of the contralateral and ipsilateral hands. Significance. This is the first study to decode both contralateral and ipsilateral finger movements from PPC. Online BMI control of contralateral fingers exceeded that of previous finger BMIs. PPC and MC signals can be used to control individual prosthetic fingers, which may contribute to a hand restoration strategy for people with tetraplegia.

Original languageEnglish (US)
Article number036020
JournalJournal of neural engineering
Volume20
Issue number3
DOIs
StatePublished - Jun 1 2023

Keywords

  • brain-computer interface (BCI)
  • factorized representations
  • finger decoding
  • hand movement
  • motor cortex (MC)
  • posterior parietal cortex (PPC)
  • representational geometry

ASJC Scopus subject areas

  • Biomedical Engineering
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Decoding and geometry of ten finger movements in human posterior parietal cortex and motor cortex'. Together they form a unique fingerprint.

Cite this