@inproceedings{e07d5573eb054778b17993a7b6369208,
title = "Cone-Beam Computed Tomography (CBCT) Segmentation by Adversarial Learning Domain Adaptation",
abstract = "Cone-beam computed tomography (CBCT) is increasingly used in radiotherapy for patient alignment and adaptive therapy where organ segmentation and target delineation are often required. However, due to the poor image quality, low soft tissue contrast, as well as the difficulty in acquiring segmentation labels on CBCT images, developing effective segmentation methods on CBCT has been a challenge. In this paper, we propose a deep model for segmenting organs in CBCT images without requiring labelled training CBCT images. By taking advantage of the available segmented computed tomography (CT) images, our adversarial learning domain adaptation method aims to synthesize CBCT images from CT images. Then the segmentation labels of the CT images can help train a deep segmentation network for CBCT images, using both CTs with labels and CBCTs without labels. Our adversarial learning domain adaptation is integrated with the CBCT segmentation network training with the designed loss functions. The synthesized CBCT images by pixel-level domain adaptation best capture the critical image features that help achieve accurate CBCT segmentation. Our experiments on the bladder images from Radiation Oncology clinics have shown that our CBCT segmentation with adversarial learning domain adaptation significantly improves segmentation accuracy compared to the existing methods without doing domain adaptation from CT to CBCT.",
keywords = "CBCT segmentation, CycleGAN, Domain adaptation",
author = "Xiaoqian Jia and Sicheng Wang and Xiao Liang and Anjali Balagopal and Dan Nguyen and Ming Yang and Zhangyang Wang and Ji, {Jim Xiuquan} and Xiaoning Qian and Steve Jiang",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
year = "2019",
doi = "10.1007/978-3-030-32226-7_63",
language = "English (US)",
isbn = "9783030322250",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "567--575",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
address = "Germany",
}