Comparative Characterization of Human Meibomian Glands, Free Sebaceous Glands, and Hair-Associated Sebaceous Glands Based on Biomarkers, Analysis of Secretion Composition, and Gland Morphology

Yuqiuhe Liu, Igor A. Butovich, Fabian Garreis, Ingrid Zahn, Michael Scholz, Simone Gaffling, Samir Jabari, Jana Dietrich, Friedrich Paulsen

Research output: Contribution to journalArticlepeer-review

Abstract

Meibomian gland dysfunction (MGD) is one of the main causes of dry eye disease. To better understand the physiological functions of human meibomian glands (MGs), the present study compared MGs with free sebaceous glands (SGs) and hair-associated SGs of humans using morphological, immunohistochemical, and liquid chromatography—mass spectrometry (LCMS)-based lipidomic approaches. Eyelids with MGs, nostrils, lips, and external auditory canals with free SGs, and scalp with hair-associated SGs of body donors were probed with antibodies against cytokeratins (CK) 1, 8, 10, and 14, stem cell markers keratin 15 and N-cadherin, cell–cell contact markers desmoglein 1 (Dsg1), desmocollin 3 (Dsc3), desmoplakin (Dp), plakoglobin (Pg), and E-cadherin, and the tight junction protein claudin 5. In addition, Oil Red O staining (ORO) was performed in cryosections. Secretions of MGs as well as of SGs of nostrils, external auditory canals, and scalps were collected from healthy volunteers, analyzed by LCMS, and the data were processed using various multivariate statistical analysis approaches. Serial sections of MGs, free SGs, and hair-associated SGs were 3D reconstructed and compared. CK1 was expressed differently in hair-associated SGs than in MGs and other free SGs. The expression levels of CK8, CK10, and CK14 in MGs were different from those in hair-associated SGs and other free SGs. KRT15 was expressed differently in hair-associated SGs, whereas N-cadherin was expressed equally in all types of glands. The cell–cell contact markers Dsg1, Dp, Dsc3, Pg, and E-cadherin revealed no differences. ORO staining showed that lipids in MGs were more highly dispersed and had larger lipid droplets than lipids in other free SGs. Hair-associated SGs had a smaller number of lipid droplets. LCMS revealed that the lipid composition of meibum was distinctively different from that of the sebum of the nostrils, external auditory canals, and scalp. The 3D reconstructions of the different glands revealed different morphologies of the SGs compared with MGs which are by far the largest type of glands. In humans, MGs differ in their morphology and secretory composition and show major differences from free and hair-associated SGs. The composition of meibum differs significantly from that of sebum from free SGs and from hair-associated SGs. Therefore, the MG can be considered as a highly specialized type of holocrine gland that exhibits all the histological characteristics of SGs, but is significantly different from them in terms of morphology and lipid composition.

Original languageEnglish (US)
Article number3109
JournalInternational journal of molecular sciences
Volume25
Issue number6
DOIs
StatePublished - Mar 2024

Keywords

  • cell–cell contacts
  • cytokeratins
  • dry eye disease
  • meibomian gland dysfunction
  • meibomian glands
  • meibum
  • sebaceous glands
  • sebum
  • stem cell markers

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Comparative Characterization of Human Meibomian Glands, Free Sebaceous Glands, and Hair-Associated Sebaceous Glands Based on Biomarkers, Analysis of Secretion Composition, and Gland Morphology'. Together they form a unique fingerprint.

Cite this