Clinically-identified C-terminal mutations in fibulin-3 are prone to misfolding and destabilization

Da Nae R. Woodard, Emi Nakahara, John D. Hulleman

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Distinct mutations in the secreted extracellular matrix protein, fibulin-3 (F3), have been associated with a number of ocular diseases ranging from primary open angle glaucoma to cuticular age-related macular degeneration to a rare macular dystrophy, Malattia Leventinese (ML). The R345W F3 mutation that causes ML leads to F3 misfolding, inefficient secretion and accumulation at higher intracellular steady state levels in cultured cells. Herein, we determined whether fifteen other clinically-identified F3 mutations also led to similar levels of misfolding and secretion defects, which might provide insight into their potential pathogenicity. Surprisingly, we found that only a single F3 variant, L451F, presented with a significant secretion defect (69.5 ± 2.4% of wild-type (WT) F3 levels) and a corresponding increase in intracellular levels (226.8 ± 25.4% of WT F3 levels). Upon follow-up studies, when this conserved residue (L451) was mutated to a charged (Asp or Arg) or bulky (Pro, Trp, Tyr) residue, F3 secretion was also compromised, indicating the importance of small side chains (Leu, Ala, or Gly) at this residue. To uncover potential inherent F3 instability not easily observed under typical culture conditions, we genetically eliminated the sole stabilizing N-linked glycosylation site (N249) from select clinically-identified F3 mutants. This removal exacerbated R345W and L451F secretion defects (19.8 ± 3.0% and 12.4 ± 1.2% of WT F3 levels, respectively), but also revealed a previously undiscovered secretion defect in another C-terminal variant, Y397H (42.0 ± 10.1% of WT F3 levels). Yet, glycan removal did not change the relative secretion of the N-terminal mutants tested (D49A, R140W, I220F). These results highlight the uniqueness and molecular similarities between the R345W and L451F variants and also suggest that previously identified disease-associated mutations (e.g., R140W) are indistinguishable from WT with respect to secretion, hinting that they may lead to disease by an alternative mechanism.

Original languageEnglish (US)
Article number2998
JournalScientific reports
Issue number1
StatePublished - Dec 2021

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Clinically-identified C-terminal mutations in fibulin-3 are prone to misfolding and destabilization'. Together they form a unique fingerprint.

Cite this