TY - JOUR
T1 - Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products
AU - Shang, Jun
AU - Hu, Ben
AU - Wang, Junmei
AU - Zhu, Feng
AU - Kang, Yu
AU - Li, Dan
AU - Sun, Huiyong
AU - Kong, De Xin
AU - Hou, Tingjun
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/6/25
Y1 - 2018/6/25
N2 - This is a new golden age for drug discovery based on natural products derived from both marine and terrestrial sources. Herein, a straightforward but important question is "what are the major structural differences between marine natural products (MNPs) and terrestrial natural products (TNPs)?" To answer this question, we analyzed the important physicochemical properties, structural features, and drug-likeness of the two types of natural products and discussed their differences from the perspective of evolution. In general, MNPs have lower solubility and are often larger than TNPs. On average, particularly from the perspective of unique fragments and scaffolds, MNPs usually possess more long chains and large rings, especially 8- to 10-membered rings. MNPs also have more nitrogen atoms and halogens, notably bromines, and fewer oxygen atoms, suggesting that MNPs may be synthesized by more diverse biosynthetic pathways than TNPs. Analysis of the frequently occurring Murcko frameworks in MNPs and TNPS also reveals a striking difference between MNPs and TNPs. The scaffolds of the former tend to be longer and often contain ester bonds connected to 10-membered rings, while the scaffolds of the latter tend to be shorter and often bear more stable ring systems and bond types. Besides, the prediction from the naïve Bayesian drug-likeness classification model suggests that most compounds in MNPs and TNPs are drug-like, although MNPs are slightly more drug-like than TNPs. We believe that MNPs and TNPs with novel drug-like scaffolds have great potential to be drug leads or drug candidates in drug discovery campaigns.
AB - This is a new golden age for drug discovery based on natural products derived from both marine and terrestrial sources. Herein, a straightforward but important question is "what are the major structural differences between marine natural products (MNPs) and terrestrial natural products (TNPs)?" To answer this question, we analyzed the important physicochemical properties, structural features, and drug-likeness of the two types of natural products and discussed their differences from the perspective of evolution. In general, MNPs have lower solubility and are often larger than TNPs. On average, particularly from the perspective of unique fragments and scaffolds, MNPs usually possess more long chains and large rings, especially 8- to 10-membered rings. MNPs also have more nitrogen atoms and halogens, notably bromines, and fewer oxygen atoms, suggesting that MNPs may be synthesized by more diverse biosynthetic pathways than TNPs. Analysis of the frequently occurring Murcko frameworks in MNPs and TNPS also reveals a striking difference between MNPs and TNPs. The scaffolds of the former tend to be longer and often contain ester bonds connected to 10-membered rings, while the scaffolds of the latter tend to be shorter and often bear more stable ring systems and bond types. Besides, the prediction from the naïve Bayesian drug-likeness classification model suggests that most compounds in MNPs and TNPs are drug-like, although MNPs are slightly more drug-like than TNPs. We believe that MNPs and TNPs with novel drug-like scaffolds have great potential to be drug leads or drug candidates in drug discovery campaigns.
UR - http://www.scopus.com/inward/record.url?scp=85047649876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047649876&partnerID=8YFLogxK
U2 - 10.1021/acs.jcim.8b00125
DO - 10.1021/acs.jcim.8b00125
M3 - Article
C2 - 29792805
AN - SCOPUS:85047649876
SN - 1549-9596
VL - 58
SP - 1182
EP - 1193
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 6
ER -