Blood triggered rapid release porous nanocapsules

Tiffany P. Gustafson, Sergey A. Dergunov, Walter J. Akers, Qian Cao, Selena Magalotti, Samuel Achilefu, Eugene Pinkhassik, Mikhail Y. Berezin

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Rapid-release drug delivery systems present a new paradigm in emergency care treatments. Such systems combine a long shelf life with the ability to provide a significant dose of the drug to the bloodstream in the shortest period of time. Until now, development of delivery formulations has concentrated on slow release systems to ensure a steady concentration of the drug. To address the need for a quick release system, we created hollow polyacrylate nanocapsules with nanometer-thin porous walls. Burst release occurs upon interaction with blood components that leads to escape of the cargo. The likely mechanism of release involves a conformational change of the polymer shell caused by binding albumin. To demonstrate this concept, a near-infrared fluorescent dye indocyanine green (ICG) was incorporated inside the nanocapsules (NCs). ICG-loaded nanocapsules demonstrated a remarkable shelf life in aqueous buffers with no release of ICG for twelve months. Rapid release of the dye was demonstrated first in vitro using albumin solution and serum. SEM and light scattering analysis demonstrated the retention of the nanocapsule architecture after the release of the dye upon contact with albumin. In vivo studies using fluorescence lifetime imaging confirmed quick discharge of ICG from the nanocapsules following intravenous injection.

Original languageEnglish (US)
Pages (from-to)5547-5555
Number of pages9
JournalRSC Advances
Issue number16
StatePublished - Apr 28 2013
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)


Dive into the research topics of 'Blood triggered rapid release porous nanocapsules'. Together they form a unique fingerprint.

Cite this