TY - JOUR
T1 - BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization
AU - Hitt, Brian D.
AU - Jaramillo, Thomas C.
AU - Chetkovich, Dane M.
AU - Vassar, Robert
N1 - Funding Information:
The authors would like to acknowledge Teng-Leong Chew, Director for University Imaging Resources at Northwestern University, and the members of the Vassar lab for helpful input and technical assistance. This work was supported by NIH grant 2R01AG022560, Northwestern University MSTP Training Grant (5-T32-GM08152-19), and Northwestern University Cellular and Molecular Basis of Disease Training Grant (T32 NIH T32 GM08061).
PY - 2010
Y1 - 2010
N2 - Background. BACE1 is a key enzyme in the generation of the Aβ peptide that plays a central role in the pathogenesis of Alzheimer's disease. While BACE1 is an attractive therapeutic target, its normal physiological function remains largely unknown. Examination of BACE1-/- mice can provide insight into this function and also help anticipate consequences of BACE1 inhibition. Here we report a seizure-susceptibility phenotype that we have identified and characterized in BACE1-/- mice. Results. We find that electroencephalographic recordings reveal epileptiform abnormalities in some BACE1-/- mice, occasionally including generalized tonic-clonic and absence seizures. In addition, we find that kainic acid injection induces seizures of greater severity in BACE1-/- mice relative to BACE1 +/+ littermates, and causes excitotoxic cell death in a subset of BACE1-/- mice. This hyperexcitability phenotype is variable and appears to be manifest in approximately 30% of BACE1-/- mice. Finally, examination of the expression and localization of the voltage-gated sodium channel α-subunit Nav1.2 reveals no correlation with BACE1 genotype or any measure of seizure susceptibility. Conclusions. Our data indicate that BACE1 deficiency predisposes mice to spontaneous and pharmacologically-induced seizure activity. This finding has implications for the development of safe therapeutic strategies for reducing Aβ levels in Alzheimer's disease. Further, we demonstrate that altered sodium channel expression and axonal localization are insufficient to account for the observed effect, warranting investigation of alternative mechanisms.
AB - Background. BACE1 is a key enzyme in the generation of the Aβ peptide that plays a central role in the pathogenesis of Alzheimer's disease. While BACE1 is an attractive therapeutic target, its normal physiological function remains largely unknown. Examination of BACE1-/- mice can provide insight into this function and also help anticipate consequences of BACE1 inhibition. Here we report a seizure-susceptibility phenotype that we have identified and characterized in BACE1-/- mice. Results. We find that electroencephalographic recordings reveal epileptiform abnormalities in some BACE1-/- mice, occasionally including generalized tonic-clonic and absence seizures. In addition, we find that kainic acid injection induces seizures of greater severity in BACE1-/- mice relative to BACE1 +/+ littermates, and causes excitotoxic cell death in a subset of BACE1-/- mice. This hyperexcitability phenotype is variable and appears to be manifest in approximately 30% of BACE1-/- mice. Finally, examination of the expression and localization of the voltage-gated sodium channel α-subunit Nav1.2 reveals no correlation with BACE1 genotype or any measure of seizure susceptibility. Conclusions. Our data indicate that BACE1 deficiency predisposes mice to spontaneous and pharmacologically-induced seizure activity. This finding has implications for the development of safe therapeutic strategies for reducing Aβ levels in Alzheimer's disease. Further, we demonstrate that altered sodium channel expression and axonal localization are insufficient to account for the observed effect, warranting investigation of alternative mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=77955792343&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955792343&partnerID=8YFLogxK
U2 - 10.1186/1750-1326-5-31
DO - 10.1186/1750-1326-5-31
M3 - Article
C2 - 20731874
AN - SCOPUS:77955792343
SN - 1750-1326
VL - 5
JO - Molecular Neurodegeneration
JF - Molecular Neurodegeneration
IS - 1
M1 - 31
ER -