A ribosome-associating factor chaperones tail-anchored membrane proteins

Malaiyalam Mariappan, Xingzhe Li, Sandra Stefanovic, Ajay Sharma, Agnieszka Mateja, Robert J. Keenan, Ramanujan S. Hegde

Research output: Contribution to journalArticlepeer-review

225 Scopus citations

Abstract

Hundreds of proteins are inserted post-translationally into the endoplasmic reticulum (ER) membrane by a single carboxy-terminal transmembrane domain (TMD). During targeting through the cytosol, the hydrophobic TMD of these tail-anchored (TA) proteins requires constant chaperoning to prevent aggregation or inappropriate interactions. A central component of this targeting system is TRC40, a conserved cytosolic factor that recognizes the TMD of TA proteins and delivers them to the ER for insertion. The mechanism that permits TRC40 to find and capture its TA protein cargos effectively in a highly crowded cytosol is unknown. Here we identify a conserved three-protein complex composed of Bat3, TRC35 and Ubl4A that facilitates TA protein capture by TRC40. This Bat3 complex is recruited to ribosomes synthesizing membrane proteins, interacts with the TMDs of newly released TA proteins, and transfers them to TRC40 for targeting. Depletion of the Bat3 complex allows non-TRC40 factors to compete for TA proteins, explaining their mislocalization in the analogous yeast deletion strains. Thus, the Bat3 complex acts as a TMD-selective chaperone that effectively channels TA proteins to the TRC40 insertion pathway.

Original languageEnglish (US)
Pages (from-to)1120-1124
Number of pages5
JournalNature
Volume466
Issue number7310
DOIs
StatePublished - Aug 26 2010
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'A ribosome-associating factor chaperones tail-anchored membrane proteins'. Together they form a unique fingerprint.

Cite this