A machine learning approach to targeted balance rehabilitation in people with Parkinson's disease using a sparse sensor set

Nathaniel T. Pickle, Staci M. Shearin, Nicholas P. Fey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Clinical Balance Assessments Often Rely On Functional Tasks As A Proxy For Balance (E.G., Timed Up And Go). In Contrast, Analyses Of Balance In Research Settings Incorporate Quantitative Biomechanical Measurements (E.G., Whole-Body Angular Momentum, H) Using Motion Capture Techniques. Fully Instrumenting Patients In The Clinic Is Not Feasible, And Thus It Is Desirable To Estimate Biomechanical Quantities Related To Balance From Measurements Taken From A Subset Of The Body Segments. Machine Learning Algorithms Are Well-Suited For This Type Of Low- To High-Dimensional Mapping. Thus, Our Objective Was To Develop And Validate An Artificial Neural Network For Estimating Contributions To H From 12 Body Segments Using Only Five Inertial Measurement Units. The Network Was Trained, Tested And Validated On Data From Five Able-Bodied Individuals Performing Forty Trials Each Of A Circuit Involving Complex Walking Tasks, Including Stairs, Ramp, And Direction Changes. The Network Was Also Separately Tested On Four Trials Of An Individual With Parkinson'S Disease Walking On The Circuit. The Output Of The Network Was Strongly Correlated With The Segment Contributions To H In Both Able-Bodied (R= 0.997) And Parkinson'S Disease (R= (0.998) Subjects. The Estimated Values Also Had Low Error Relative To The Signal Magnitude, With The Largest Mean ± SD Rootmean-Squared Errors Of 8.04 ± 1.76% Peak Signal Magnitude In Able-Bodied Individuals And 7.96 ± 0.91% In The Individual With Parkinson'S Disease. These Promising Results Establish The Feasibility Of Using A Sparse Set Of Inertial Measurement Units To Provide Quantitative Data To Clinicians For Targeted Balance Rehabilitation Across Different Patients.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1202-1205
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'A machine learning approach to targeted balance rehabilitation in people with Parkinson's disease using a sparse sensor set'. Together they form a unique fingerprint.

Cite this